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Abstract

We present a new mesh simplification technique developed for a statis-
tical analysis of a large data set distributed on a generic complex surface,
topologically equivalent to a sphere. In particular, we focus on an applica-
tion to cortical surface thickness data. The aim of this approach is to produce
a simplified mesh which does not distort the original data distribution so that
the statistical estimates computed over the new mesh exhibits good inferen-
tial properties. To do this, we propose an iterative technique that, for each
iteration, contracts the edge of the mesh with the lowest value of a cost func-
tion. This cost function takes into account both the geometry of the surface
and the distribution of the data on it. After the data are associated with the
simplified mesh, they are analyzed via a spatial regression model for non-
planar domains. In particular, we resort to a penalized regression method
that first conformally maps the simplified cortical surface mesh into a planar
region. Then, existing planar spatial smoothing techniques are extended to
non-planar domains by suitably including the flattening phase. The effective-
ness of the entire process is numerically demonstrated via a simulation study
and an application to cortical surface thickness data.

Keywords: Iterative edge contraction, conformal flattening maps, regression anal-
ysis, statistical analysis of complex data, cortical surface thickness data

1 Introduction and motivation

In this paper, we develop a technique to analyze large data sets lying on compli-
cated two-dimensional manifolds. In particular, we are interested in analyzing data
observed over the cortical surface of the brain, a two-dimensional manifold with
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many folds and creases, constituting the outermost part of the brain. The data of
interest are the hemodynamic signals associated with neural activity on the cerebral
cortex, or the measurements of the cerebral cortex thickness (i.e., the thickness of
grey matter tissue). From a medical viewpoint, the study of these data is of relative
importance to better understand brain functions and the underlying mechanics of
brain diseases. For instance, the thickness of the cerebral cortex changes over time
and is linked, in the medical literature, to the pathology of many neurological disor-
ders such as autism, Alzheimer’s disease and schizophrenia [19]. Cortical surface
data are obtained from reconstructions of the output of various types of magnetic
resonance imaging (MRI) (see, e.g.,[5]). Figure 1 shows an example of thickness
data studied in [3] and [4]. On the left, a cortical surface mesh is provided, while,
on the right, we have the corresponding thickness measurements at each node of
the mesh represented as a color map, obtained by linearly interpolating the mea-
surements at the mesh nodes. Due to the folded nature of the cerebral cortex, the
mesh generation process is a complex multistep procedure that results in a very
large data set (often more than 106 nodes). Moreover, these data sets are usually
characterized by noise in both the node locations and the data measurements. Ad-
vanced methods for modeling data spatially distributed over these manifolds are
consequently required.

Figure 1: Example of a cortical thickness data set: a cortical surface mesh with
40962 nodes (left); color map of the cortical thickness (right). The data and the
Matlab code used to build the color map are available at http://www.stat.
wisc.edu/˜mchung/softwares/hk/hk.html

We propose an efficient technique to analyze large noisy data sets associated
with triangular meshes of complicated non-planar geometries. To do this, we cou-
ple a mesh simplification technique with a spatial regression method for analyzing

2

http://www.stat.wisc.edu/~mchung/softwares/hk/hk.html
http://www.stat.wisc.edu/~mchung/softwares/hk/hk.html


data on non-planar domains. The motivation for the simplification procedure is to
reduce the computational effort associated with the statistical analysis of the large
data sets that are typical in cortical surface applications. The proposed simplifica-
tion procedure is designed specifically for producing a mesh that does not distort
the original data distribution and is optimal for a statistical analysis of the data. In
particular, through an iterative procedure, we take into account both the geometry
of the mesh and the data distribution over it. The simplified geometry is generated
in a way such that the analysis of the data associated with it should have statistical
estimates with good inferential properties. For the data analysis, we resort to the
Spatial Regression model for Non-Planar domains (SR-NP) developed in [9]. The
SR-NP approach smooths the noisy data by minimizing a sum of squared error
functional with a roughness penalty term involving the Laplace-Beltrami operator
associated with the non-planar domain. The estimation problem on the surface is
then appropriately recast over a planar domain via a conformal map. In the planar
domain, existing spatial smoothing techniques are generalized by suitably taking
into account the flattening of the domain. Notice that mapping to a planar domain
would also allow for a statistical analysis across patients, similar to mapping to a
reference brain [4]. In fact, via the SR-NP method, patient-specific estimates can
all be mapped to a common planar domain where, after suitable registration among
patients, comparisons across patients can be made. Nevertheless, the development
of full inferential and uncertainty quantification tools for these population studies
is outside the scope of this current paper. However, the mesh simplification pro-
posed in this paper lays a foundation for these tools. The original application for
the SR-NP method was modeling hemodynamic forces on the carotid artery (or on
any manifold topologically equivalent to a cylinder). Since the cortical surface can
be represented by a topological sphere, the conformal map has to be modified ac-
cordingly. To accomplish this, we implement a modified version of the conformal
map suggested in [1]. The modification we introduce provides robust results when
flattening some of the undesirable triangulations generated by the segmentation
and extraction procedures [5].

Alternative approaches proposed in the literature chose different methods for
containing the computational cost associated with the analysis of large cortical sur-
face data sets. The nearest neighbor averaging technique developed in [12] is an
iterative technique that smooths the variable of interest observed at each vertex of
the mesh by suitably averaging this value with the ones observed at the neighbor-
ing vertices. The averaging process is repeated several times to create a smoothing
effect. Although this technique is practical for smoothing data over the cortical sur-
face, more sophisticated methods have been developed to build inferential tools that
measure the uncertainty of the resulting estimates. For example, a recent method
proposed in [19] identifies the mesh with a weighted graph. Then, the data asso-
ciated with the mesh is smoothed by tuning the local support around each vertex
of the graph via a graph Laplacian. Another example of a smoothing technique for
neuroimaging applications is the Iterative Heat Kernel (IHK) smoothing introduced
in [4]. This geodesic distance based kernel smoothing method solves the Laplace-
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Beltrami eigenvalue problem directly on the surface to construct a basis for the
heat kernel on the cortical surface. Then, a finite number of these basis functions
are used in the expansion of the heat kernel. In particular, a smoothing window is
defined around each data point. The size of the smoothing window is identified by
a parameter called the bandwidth. Finally, the number of terms used in the Fourier
series expansion of the heat kernel is properly adjusted via an iterative algorithm.

We note that both the SR-NP method and IHK smoothing employ the Laplace-
Beltrami operator of the cortical surface, however in very different ways. In the
SR-NP method, the Laplace-Beltrami operator is used to control the roughness of
the solution, while IHK smoothing resorts to the Laplace-Beltrami operator to cre-
ate a basis for the heat kernel directly on the cortical surface. As a second relevant
difference, IHK smoothing is not currently designed to include space varying co-
variates. On the contrary, the method we propose has the desired inferential tools
as well as the ability to include space varying covariates. In Sections 4-5 we nu-
merically demonstrate the effectiveness of our method to highlight its very good
performance and comparative advantages with respect to alternative methods.

The paper is organized as follows. Section 2 describes the mesh simplification
strategy and explains how the original data points are associated with the simplified
mesh. Section 3 gives the details of the SR-NP method and introduces a new
flattening map for cortical surfaces. Section 4 is devoted to simulation studies,
while Section 5 applies the proposed procedure to cortical surface data. Finally,
Section 6 draws some conclusions and states future research directions.

2 The mesh simplification strategy

A cortical surface mesh is usually composed by a large number of vertices resulting
in a high computational cost for the subsequent statistical analysis. The idea is to
reduce this drawback via a surface mesh simplification process.

Consider a triangulated surface Γh embedded in R3 where a scalar data value z
has been observed at each node of the mesh via the values zj , for j = 1, . . . , n. For
example, the scalar data in Figure 1 (right), are the values of the cortical surface
thickness measured at each node of the mesh on the left. Hence, the original data
locations coincide with the nodes of the original mesh. Our goal is to build a new
mesh Γ′h with m vertices, where m � n, while properly associating the original
scalar data values with this new mesh. Due to the highly folded nature of the brain,
this association is really involved. The proposed simplification method carefully
tracks the origin of the data and correctly associates it with the new mesh. For
instance, in the sulci of the brain, the data is correctly associated with the side of
the sulcus it comes from instead of with the closest side (see Figure 2).

Surface mesh simplification has received a lot attention in the literature. Sev-
eral different strategies have been presented to achieve this goal. They can be
categorized as follows:

• VERTEX DECIMATION: this algorithm iteratively removes a vertex of the
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Figure 2: Cross-section of an original mesh (solid lines); the new mesh (dashed
line) replaces the two segments sharing the vertex A with the segment e1. In the
new configuration, the correct projection of the data point A is B and not C, even
though C is closer to A.

mesh and all the adjacent faces by looking at the distance from the vertex to
the average plane identified by its neighborhood; then, the resulting hole is
remeshed (see [28] for more details).

• VERTEX CLUSTERING: in this case a bounding box is placed around the
original mesh and it is divided via an octree algorithm; then, in each cell
of the octree, the vertices are clustered together into a single vertex and the
faces of the mesh are suitably updated (see [26] and [18]).

• ITERATIVE EDGE CONTRACTION: the mesh is iteratively simplified by con-
tracting the edges (see [14, 25] and [15]); an extension of this strategy is
proposed in [10], where an additional contraction is made between any two
vertices which are too close to one another and not necessary connected by
an edge. The validity of an edge contraction can be based on other properties
of the mesh, for instance, on the preservation of a homeomorphism in some
lower dimensional environment as in [6].

We propose a mesh simplification process based on this last approach. In more
detail, we develop an iterative technique such that, for each iteration, we contract
an edge of the mesh Γh via a properly defined edge cost function. The strategies
currently available in the literature usually take into account only the geometric
aspects of the simplification process, i.e., they find a new mesh Γ′h with fewer
elements that approximates the mesh Γh in a best way possible. Here, we aim at
enriching the geometric criterion with data information. In particular, the novelty
of the proposed simplification strategy is twofold: associating the scalar data values
of the original mesh with the new mesh Γ′h, and considering their displacement and
distribution on the simplified mesh during the contraction process. To do this, we
drive the simplification process via an edge cost function that takes into account
both the geometric fitting of the domain and the association of the data points with
the new mesh. In particular, for the data association, we analyze the displacement
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of the data points from their original positions to their new locations on Γ′h as well
as the evenness of the resulting data distribution over Γ′h. Our aim is to control
these two data properties to ensure quality statistical estimates with good inferential
properties. The proposed algorithm has been developed for closed surfaces with
genus zero (i.e, with no holes), but it can be extended to high genus or open surfaces
by properly accounting for the edges in the neighborhood of the hole or boundary
during the contraction process.

To describe the simplification process, we introduce the following notation.
During the iterative contraction process, we consider an edge e with endpoints v1

and v2. Then, we replace the vertices v1 and v2 with a single new vertex v∗, which,
a priori, may coincide with the end points v1 and v2 (see Figure 3). In general, we
say that the edge e is contracted into the vertex v∗. For each contraction, we define
the following sets:

• Tedge, the set of triangles connected to edge e, i.e., the set of triangles that
have either v1 or v2 as a vertex (the patch of elements in Figure 3, left).

• Tnew, the set of triangles in Tedge after the contraction (the patch of elements
in Figure 3, right).

ev1

v2

Tedge

v∗

Tnew

Figure 3: Contraction of the edge e into
the vertex v∗.

ev1

v2

Pedge

v∗

Pnew

Figure 4: Data point sets during the con-
traction process (in this case Porig ≡
Pedge).

Finally, we denote by Porig the original location of the data points, while the set
of all the data points projected on the triangles in Tedge is denoted by Pedge. After
the contraction, the data points are projected onto the triangles in Tnew and denoted
by Pnew (see Figure 4). Now, the data points do not necessarily coincide with the
mesh nodes.

2.1 Preliminary geometric considerations

The contraction of a generic edge e can lead to undesired topological artifacts. In
the initial mesh, the triangles are oriented so that the corresponding normals are
pointing outward with respect to the surface. When an edge is contracted may pro-
duce an inverted triangle, i.e., a triangle whose normal points inward. The inward
normal changes the orientation of the triangle yielding a triangle with negative area
(see Figure 5).
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The situation becomes even more complicated on geometries with folds such
as the cortical surface. In certain configurations, the location of v∗ can also create
a self-intersection of the mesh as shown in Figure 6. To overcome these problems,
we have developed a series of specific tests that control the undesired features. In
particular, to prevent

• the inversion of triangles, we check the normals of the triangles constituting
Tnew. After the contraction, these normals may change direction and orien-
tation. The angle between the corresponding normals before and after the
contraction has to be strictly less than π/2;

• the self-intersection of the newly generated triangles with neighboring ele-
ments, we resort to a series of triangle-triangle intersection tests developed
in [22].

If the contraction of the edge e into the vertex v∗ passes the two tests above, we
refer to the edge e as a valid edge.

e

v1

v2

v∗

Figure 5: Example of a contraction of an
edge that produces an inverted triangle:
when the edge e on the left is contracted
into the vertex v∗, the inverted colored
triangle on the right is generated.

e
v∗

Figure 6: Example of self-intersection
due to the nature of the sulci. The algo-
rithm tries to contract the edge e into the
node v∗ (left), but this operation yields a
self intersection (right).

2.2 The edge cost function

In order to select the contraction to perform during a given iteration of the mesh
simplification procedure, we introduce the notion of contraction cost. This value
takes into account both the geometric approximation of the mesh and the associa-
tion of the original data with the new mesh. Hence, we define the contraction cost
function to be

c(e, v∗) := αcgeo(e, v∗) + βcdata(e, v
∗),

where e is a generic edge of the mesh and v∗ is the node that replaces the edge e,
while cgeo(e, v∗) and cdata(e, v

∗) represent the geometric cost function and the data
cost function, respectively. In particular, cgeo(e, v∗) is a function that associates
with the edge e and the vertex v∗ a positive real number that measures the loss of
geometric accuracy produced by the contraction of e into v∗. Similarly, cdata(e, v

∗)
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measures the loss of good properties for the subsequent statistical analysis in terms
of the displacement and distribution of the data points over the new mesh. The
weights α, β ∈ R+ balance each function’s contribution to the overall contraction
cost (possible choices for α and β are given in Section 2.3). The goal of the next
two sections is to explain how to compute cgeo(e, v∗) and cdata(e, v

∗), respectively.

2.2.1 The geometric cost function

In order to approximate the geometry of the mesh, we use the theory provided in
[10]. Here, we briefly recall its basic concepts and explain how we exploit them.

Each vertex v of the mesh can be seen as the intersection of a set of planes.
The error of a new vertex v∗ with respect to these planes can be defined as the sum
of squared distances to these planes, i.e., as∑

%∈πv
(%tv∗)2 , (1)

where % = [a b c d]t represents a generic plane in R3 defined by the equation ax+
by + cz + d = 0, with a2 + b2 + c2 = 1, and πv is the set of planes identified
by the triangles of the mesh sharing the vertex v. Note that, here, the vertex v∗ is
assigned to a vector in R4 where the last component is one, in order to properly
define the scalar product %tv∗. Definition (1) leads us to introduce, for a generic
vertex v, the symmetric matrix Qv :=

∑
%∈πv %%

t ∈ R4×4. Consequently, given
the edge e with vertices v1 and v2, and the associated matrices Qv1 and Qv2 , we
can define the symmetric matrix Qe := Qv1 +Qv2 . Thus, for a generic vertex v∗,
the quantity

v∗tQev
∗ , (2)

can be assumed to estimate the loss of geometric accuracy due to the contraction
of the edge e into the node v∗. Following [10], during the mesh simplification
process, for each edge e, we consider four possible different locations of the point
v∗:

v1 , v2 , (v1 + v2)/2 , and vopt,

where vopt is the optimal position that minimizes the quantity (2). We consider
three different configurations besides vopt since this optimal position does not nec-
essarily exist or it may produce an undesired configuration (see Section 2.1). Thus,
for a valid edge e and an optimal location for v∗, we define the geometric cost for
contracting the edge e into the node v∗ by the quantity

cgeo(e, v∗) := v∗tQev
∗ . (3)

2.2.2 The data cost function

The actual novelty of the proposed algorithm lies in incorporating the data points
into the simplification process. For the statistical analysis that follows the mesh
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simplification, it is crucial to properly take into account the association of the orig-
inal data with the new mesh. Thus, to reduce the error with respect to using the
original mesh, we attempt to control the displacement of the data locations when
they are projected onto the new mesh. Another crucial property the new mesh
needs to produce quality statistical estimates with good inferential properties is an
equidistribution of the original data points over Γ′h, i.e., to produce estimates that
are robust and characterized by low bias (i.e., low systematic errors) each triangle
should contain, a priori, the same quantity of information, independently of the
size of the triangle. In order to evaluate the effectiveness of an edge contraction in
the current mesh Γ′h with respect to the resulting data associations, we consider

a) the displacement of the data points, i.e., the distance between the projected data
locations and their original locations;

b) the equidistribution of the data points over the triangles of the new mesh Γ′h,
i.e., each triangle of Γ′h should be associated with about the same number of
data points. Equidistribution of the data should ensure that the quality of the
inferences provided by the statistical estimates is uniform over the entire mesh.

To take care of both these aspects, we introduce two suitable cost functions, one
for each desired feature. Thus the total data cost function is defined as

cdata(e, v
∗) := β1cdisp(e, v∗) + β2cequi(e, v

∗),

where β1 and β2 are positive real numbers that properly weight the contribution of
the data point displacement cost function, cdisp(e, v∗), and of data distribution cost
function, cequi(e, v

∗), respectively. These two cost functions are rigorously defined
below.

Before dealing with these two features of the mesh simplification process, let
us make some further considerations about the data projection phase of the process.
Although, the data points are orthogonally projected onto the simplified mesh Γ′h,
this projection is not straightforward on complicated surfaces such as the highly
folded cortical surface. For example, in Figure 2, the correct location for the point
A on the new mesh is the point B on the edge e1 and not the point C on the edge
e2. Specifically, each point of Γh can be projected onto the new mesh Γ′h in one of
the following ways:

- to the face of a triangle of Γ′h;

- to an edge between two triangles of Γ′h;

- to a vertex of Γ′h.

After the projection procedure, the data points are associated with their projection
on Γ′h.

9



Data displacement function When the edge e is contracted into the point v∗, we
define the corresponding displacement cost function as

cdisp(e, v∗) := max
(p,q)∈Pnew×Porig

‖p− q‖, (4)

with ‖ · ‖ the Euclidean norm, which measures the maximum Euclidean distance
between the orthogonally projected locations of the data points Pnew, and their
original locations Porig (see Figure 7). By minimizing the displacement of the data
associations during the contraction process, we are able to reduce the error between
the statistical estimates that use the original data points on Γh and the estimates
based on the data points associated with the simplified mesh Γ′h. Of course, this
minimization step is properly constrained to avoid any incorrect associations such
as the one discussed in Figure 2.

Figure 7: Surface during the simplification process: the distance between the pro-
jected locations of the data points, Pnew, and their original locations, Porig, is illus-
trated.

Data distribution function Our goal at the end of the simplification process is to
obtain a new mesh where each element contains approximately the same number of
data points, i.e., to equidistribute the data points in the new mesh. For this purpose,
during the simplification process, we define the quantity of information associated
with each triangle T via the number

NT := nf +
1

2
ne +

1

#(Tv1)
n1 +

1

#(Tv2)
n2 +

1

#(Tv3)
n3 , (5)

where nf and ne denote the number of data points associated with the face and
the edges of the triangle T , respectively. For j = 1, 2, 3, nj is the number of
data points associated with vj , the j-th vertex of T , Tvj is the patch of elements
associated with vj and #(Tvj ) denotes the cardinality of the patch Tvj .

Moving from (5), we denote by N the mean value of NT over the entire mesh
before the current iteration of the simplification process takes place. Then, when
contracting the edge e into v∗, we compute the quantity NT for all the triangles in
Tnew and we evaluate the following distribution cost function

cequi(e, v
∗) :=

1

#(Tnew)

( ∑
T∈Tnew

(NT −N)2

)
.
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For a contraction of the edge e into the vertex v∗, this value measures the variation
in the distribution of the number of data points associated with triangles in Tnew
with respect to N. Minimizing this variation should yield an even distribution of
the data locations over the triangles in the final mesh. Notice that cequi(e, v

∗) can
also be expressed as

cequi(e, v
∗) :=

1

#(Tnew)

( ∑
T∈Tnew

(NT −N cont)
2 + (N cont −N)2

)
, (6)

where N cont is the mean value of NT over Tnew. By minimizing (6), we are re-
ducing the variance of the distribution of the number of data points associated with
each triangle in the patch Tnew, via the first term. While, with the second term, we
are lowering the difference between the mean number of data associated with each
triangle in Tnew and the corresponding mean value computed over the entire mesh
before the contraction. Moreover, after the contraction, we add a further check
on each triangle of Tnew to assure that the contraction does not produce an empty
triangle, i.e., a triangle with no data associations.

The employment of cequi(e, v
∗) during the contraction process, allows us to

even out the uncertainty of the statistical estimates over the entire mesh Γ′h. This
increases the quality of the inferences provided by the statistical estimates. In
more detail, in the presence of data evenly distributed throughout the mesh, the
resulting pointwise confidence intervals for the estimates will all have about the
same size. This means that the quality of the estimates will be uniform over the
entire mesh, i.e, no region of the mesh will have a better estimate to the solution
than other regions. The corresponding hypothesis tests will all have about the same
power, allowing for consistent conclusions to be drawn over the whole mesh. This
is extremely important for cortical surface applications where the interest lies in
finding areas of activation or evidence of disease. The same level of uncertainty
everywhere is necessary to produce clear and interpretable results.

2.3 Combination of the geometric and the data cost functions

The cost functions in (3), (4) and (6) may have different ranges depending on the
data and the geometry. So, we normalize these three functions by their respective
maxima. No change in notation is employed in the following for these normalized
quantities.

Now, for each valid contraction of the edge e into the vertex v∗, we compute
the cost c(e, v∗) as the linear combination

c(e, v∗) = αcgeo(e, v∗) + β1cdisp(e, v∗) + β2cequi(e, v
∗), (7)

applied to the normalized values of the three cost functions, and thus we obtain the
overall contraction cost for the edge e and the vertex v∗. A low value of c(e, v∗)
means that the contraction will yield a good geometric approximation to the origi-
nal geometry, where the data points are close to their original locations and evenly
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distributed throughout the triangles of the new mesh. On the contrary, a high value
of c(e, v∗) means that the contraction will produce a bad approximation of the orig-
inal surface, or the projected data points are too far from their original locations or
there might be triangles with too many or too few data points associated with them.
As a consequence, if we iteratively remove the edge of the mesh characterized by
the lowest cost, we obtain a new mesh with all the desired properties.

The algorithm is straightforward. We have implemented a dynamic data struc-
ture that, for each triangle of the current mesh, stores a valid edge of the triangle
which minimizes the value (7). Moving from this data structure, we iteratively con-
tract the edge with the lowest cost until we reach the desired number of nodes. Af-
ter each contraction the data structure is properly updated. This ad hoc data struc-
ture orders the edges so that we get the minimum in a constant and reduced time.
Actually, the most computationally expensive operation is updating the data struc-
ture, since the operation of removal and insertion has a cost which is O(log(N)),
where N is the number of elements already stored in the data structure. For an
initial mesh with n nodes and a fixed threshold of m nodes, where m � n, then
the simplification algorithm can be outlined as in Algorithm 1.

Throughout the paper, we apply two simplification strategies. We compare the
proposed approach that controls both the geometry and data with a more traditional
strategy that only utilizes the geometry. In particular, we denote by

• Data+Geo the simplification obtained by equally weighting the geometric,
the displacement and the distribution cost functions (α = β1 = β2 = 1/3 in
(7));

• OnlyGeo the simplification driven only by the geometric information cgeo(e, v∗)
(α = 1 and β1 = β2 = 0 in (7)).

The choice for the weights in the Data+Geo approach is, of coarse, not unique
and a more rigorous investigation of this choice is the object of future work. We
could make a different choice to give more importance to the geometry or to the
data, depending on the manifold or the application we are dealing with.

Algorithm 1 ITERATIVE MESH SIMPLIFICATION ALGORITHM
read the original mesh
create the data structure
while the number of nodes of Γ′h > m do

find the cheapest valid edge e
contract the edge e
update the data structure

end while

Let us exemplify the differences between the Data+Geo and OnlyGeo ap-
proaches on the pawn geometry in Figure 8 (left), which originally consists of
2527 nodes. We show the simplified meshes obtained with m = 1000, via the
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Figure 8: Simplification of a pawn. Original geometry with n = 2527 nodes (left),
mesh simplified tom = 1000 nodes via the Data+Geo (center) and the OnlyGeo
(right) approaches. The color map shows the quantity (5) for each triangle of the
mesh.

Data+Geo (center) and the OnlyGeo (right) approaches. Both the choices pre-
serve the shape of the pawn. However, the results are really different in terms of
the data distribution. In particular, the color map shows the quantity (5) for each
triangle of the mesh. We see that, by including the data distribution, we are able to
generate a mesh that has an even distribution of the number of data points through-
out the whole mesh while avoiding triangles with no associated data (compared
to the many empty (green) triangles produced by the OnlyGeo approach on the
right). As shown in Sections 4-5, this property ensures statistical estimates with
very good inferential properties.

3 Spatial regression models for non-planar domains

After setting the geometric procedure, in this section, we generalize the SR-NP
model proposed in [9] to the case of surfaces topologically equivalent to a sphere.
Figure 9 illustrates how we integrate the mesh simplification process with the SR-
NP method.

We modify the method for its first application to domains that are topologi-
cally equivalent to a sphere. The SR-NP method is a generalization of the penal-
ized least square estimation technique proposed in [27] for planar domains. This
method conformally maps the non-planar domain to a planar region. Then, the
penalty term employed in the planar case is modified to properly include the origi-
nal shape of the domain. In this paper, we introduce a new conformal map to deal
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Simplify the mesh

Data point

Approximate the surface
with a triangular mesh

Conformal
map X−1

 

 

 

 

Map back to the
original domain

Solve the equivalent estimation problem
over the planar domain

Validation

F

A B C

DE

Figure 9: Sketch of the whole procedure: A: simulated data over the pawn geome-
try; B: original triangular mesh of the pawn in A where each vertex coincides with
a data point (see the zoom where the data points are identified via the red dots); C:
simplified mesh with 1000 nodes yielded via the method described in Section 2. As
the zoom highlights, the data points are not necessarily associated with the mesh
nodes; D: planar triangular mesh generated via a conformal flattening map applied
to the simplified mesh in C. The data points are projected onto the planar space by
evaluating the conformal map at each data point on the geometry shown in C; E:
solution of an equivalent estimation problem solved on the planar domain in D; F:
the solution to the estimation problem is mapped back to the original manifold and
the whole process is finally validated.

with manifolds that are topologically equivalent to a sphere such as the cortical sur-
face. In particular, we move from the conformal map proposed in [1], which has
been specifically developed for cortical surfaces. We properly modify this map,
realizing that it occasionally fails when applied to configurations characterized by
obtuse triangles. Obtuse triangles are commonly created by the automatic meshing
procedures for cortical surfaces. The proposed modification affects only the ob-
tuse triangles in the mesh and reduces to the original method proposed in [1] when
applied to acute triangles. Furthermore, in the original application of the SR-NP
model, the data is assumed to occur only at the nodes of the mesh. On the con-
trary, after the mesh simplification procedure the data does not necessarily occur
at the nodes. Consequently, we properly adapt the SR-NP approach to include this
change.
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3.1 The SR-NP model

Consider n data locations {xj = (x1j , x2j , x3j) : j = 1, . . . , n}, lying on a non-
planar domain Γ that is a uniformly regular surface embedded in R3. At each loca-
tion a scalar data value, z, is observed via the value zj . We assume the following
model for the data:

zj = f(xj) + εj , (8)

for j = 1, . . . , n, where εj are independent observational errors with zero mean
and constant variance σ2,while f is a twice continuously differentiable real-valued
function defined on the surface domain Γ. Of course, f is the quantity we aim at
approximating. In practice, Γ will be approximated by a triangular mesh Γh, and
successively by the simplified mesh Γ′h, while the original data locations will be
approximated by their locations on Γ′h.

To estimate f, the following penalized sum of squared error functional is min-
imized:

JΓ,λ(f) =
n∑
j=1

(zj − f(xj))
2 + λ

∫
Γ

(∆Γf(x))2 dΓ, (9)

where ∆Γ is the Laplace-Beltrami operator associated with the surface Γ (see, e.g.,
[7]). The Laplace-Beltrami operator is a generalization of the standard Laplacian
to the case of functions defined on surfaces in Euclidean spaces. Being related to
the local curvature of f on Γ, the Laplace-Beltrami operator in the penalty controls
the roughness of the solution f . Thus, the functional JΓ,λ balances the fidelity
of the estimate to the data via the sum of the squared errors and the roughness of
the solution via the penalty term. The smoothness parameter λ > 0 adjusts this
trade-off. For the planar model setting, methods for choosing the optimal value of
the smoothness parameter λ have been discussed in the literature and include the
Akaikes Information Criterion (AIC), the Bayesian Information Criterion (BIC)
and the Generalized Cross-Validation (GCV) criterion (see [11], [24], [13] and
references therein). Here, we resort to a GCV approach.

To solve the estimation problem in (9), we first recast it over a planar domain
via a conformal map. For a non-planar domain Γ that is a Riemannian surface
embedded in R3, the Riemann Mapping Theorem ensures that there exists a con-
formal map from Γ to the unit sphere, the Euclidean plane or the unit disk. Hence,
it is possible to define a uniformly regular and continuously differentiable map

X : Ω→ Γ

u = (u1, u2) 7→ x = (x1, x2, x3),
(10)

where Ω is an open, convex and bounded set in R2 whose boundary ∂Ω is piecewise
C∞. These types of conformal maps are unique up to dilations, rotations and
translations ([17]). In particular, the map X is conformal, if

‖Xu1(u)‖ = ‖Xu2(u)‖ and 〈Xu1(u), Xu2(u)〉 = 0,
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for any u ∈ Ω, where Xu1(u) and Xu2(u) are the column vectors of the first order
partial derivatives of X with respect to u1 and u2, respectively while 〈·, ·〉 denotes
the Euclidean scalar product of two vectors with the associated norm ‖ · ‖. The
(space-dependent) metric tensor is defined as

G(u) :=

(
‖Xu1(u)‖2 〈Xu1(u), Xu2(u)〉

〈Xu2(u), Xu1(u)〉 ‖Xu2(u)‖2
)
.

LetW(u) :=
√

det(G(u)), and denote by G−1(u) the inverse of G(u). Then, for
f ◦X ∈ C2(Ω), the Γ-gradient of f is given by

∇Γf(x) = ∇X(u) G−1(u)∇f(X(u)), (11)

while the Laplace-Beltrami operator associated with the surface Γ can be written
in terms of the map X as

∆Γf(x) =
1

W(u)
div(K∇f(X(u))) , (12)

for any u ∈ Ω, where K(u) = W(u)G−1(u) is a symmetric positive definite
matrix and the divergence and gradient operators for planar domains are denoted
by div and ∇, respectively (see [7] for more details).

The representation of the Laplace-Beltrami operator in (12) highlights that an
estimation problem equivalent to (9) can be properly rewritten over the planar do-
main Ω via the map X . In more detail, we find a function f ◦X defined on Ω that
minimizes

JΩ,λ(f ◦X) =

n∑
j=1

(
zj − f(X(uj))

)2
+ λ

∫
Ω

1

W(u)

(
div(K∇f(X(u)))

)2

dΩ,

(13)
where Ω is the domain in R2 obtained via the flattening of the cortical surface. The
existence and the uniqueness of a solution to the estimation problem in (13), is
established in the functional space

H2
n0,K(Ω) =

{
g ∈ H2(Ω) : K∇g · n = 0 on ∂Ω

}
which consists of functions in H2(Ω) whose co-normal derivative is identically
equal to zero on the boundary of Ω, ∂Ω. We note that H2

n0,K(Ω) ⊂ H2(Ω) is a
modification of the standard Sobolev space H2(Ω) ([21]).

Let z = (z1, . . . , zn)t be the vector collecting the observed data values in (8).
For any function g defined on Γ, such that g ◦ X is defined on Ω, we denote the
column vector of evaluations of the function g at the n data locations xj by

gn=

(
g(x1), . . . , g(xn)

)t
=

(
g(X(u1)), . . . , g(X(un))

)t
, (14)
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with X(uj) = xj . To ease the notation, in the following we omit the dependence
on u. In [9] it is shown that the estimator f̂ ◦X that minimizes (13) overH2

n0,K(Ω)
satisfies the relation

µtnz = µtnf̂n + λ

∫
Ω

1

W

(
div (K∇(µ ◦X))

)(
div
(
K∇(f̂ ◦X)

))
dΩ, (15)

for any µ defined on Γ such that µ ◦ X ∈ H2
n0,K(Ω), with µn and f̂n defined

according to (14). Moreover, for a fixed X , the estimator f̂ ◦X is unique.

3.2 The conformal map

The goal of this section is to properly define the map X . The map employed in [9]
to flatten arteries with an aneurysm can not be directly applied for the flattening of
the cortical surface. For this purpose, we propose a modification of the approach
developed in [1]. This method assumes the cortical surface can be approximated
by a topological sphere and then uses a result from complex analysis that identifies
a topological sphere minus a point with the complex plane. When we consider a
triangular mesh of the topological sphere, this corresponds to mapping the mesh
minus a fixed triangle into the image of the fixed triangle in the complex plane.
However, this image in the complex plane is not very good for visualization pur-
poses. For this reason in [1] the flattened triangulation in the complex plane is
subsequently mapped to the unit sphere via the inverse stereographic projection.
For the SR-NP method, we only need to use the first part of this transformation
to map the cortical surface to the complex plane. We note that this map, as it is
proposed, does not work for any triangulation. In particular, it can produce a tri-
angulation in the plane with overlapping triangles. The map relies on a cotangent
formula that breaks down for certain configurations involving obtuse triangles. We
suggest a modification of this map that only affects the obtuse angles and can be
used to flatten any triangulations without generating overlapping elements.

First, we introduce the map as proposed in [1]. For a smooth two-dimensional
closed manifold Γ with genus zero embedded in R3, the conformal coordinates u1

and u2 of the planar domain Ω in (10) can be defined by a map which depends
on a single point p on Γ. In particular, we can map the surface Γ without the
point p to the complex plane C, i.e., the inverse map of X in (10) is now given by
X−1 : Γ\{p} → C. Thus, after assuming that the cortical surface is topologically
equivalent to a sphere, we can identify the unit sphere without the north pole with
the complex plane via stereographic projection. In particular, we have decided to
identify the complex plane with R2 to get the planar domain suited for our estima-
tion problem. To this end, we start by finding the inverse map X−1 = u1 + iu2 by
solving the following partial differential equation

∆ΓX
−1 =

(
∂

∂ν1
− i ∂

∂ν2

)
δp, (16)
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where δp is the Dirac delta function at the point p, i is the imaginary unit, and ν1

and ν2 are local coordinates defined in a neighborhood of p. The Laplace-Beltrami
problem (16) on Γ\{p} is completed with full homogeneous Neumann boundary
conditions.

3.2.1 Approximation of the conformal flattening map

In practice, we approximate (16) on a discretization of Γ, i.e., on the simplified
triangulated surface Γ′h yielded by the mesh simplification procedure described
in Section 2. For this purpose, we first introduce a suitable functional setting.
Let V (Γ′h) = H1(Γ′h) define the Sobolev space of the functions defined on Γ′h
which are in L2(Γ′h) together with all their first order partial derivatives ([8]). Let
Vh(Γ′h) ⊂ V (Γ′h) be the finite dimensional discrete space of the piecewise linear
functions defined on Γ′h. We denote by {ψj} a Lagrangian basis for Vh(Γ′h), such
that ψj(vl) = δjl for any vertex vl of Γ′h, where δjl is the Kronecker delta symbol.

First, let us approximate the right-hand side of (16). Let g be a generic smooth
function in a neighborhood of p. Then, we have∫∫

Γ′
h

g

(
∂

∂ν1
− i ∂

∂ν2

)
δp dΓ′h = −

(
∂g

∂ν1
− i ∂g

∂ν2

)∣∣∣∣
p

. (17)

In particular, if g ∈ Vh(Γ′h), we can compute the quantities in (17) by the values
of g at the vertices of the triangle4ABC (i.e., the triangle with vertices A, B, C)
that contains the point p (see [1]). Now, we choose the ν1- and ν2-axes so that A
and B lie along the ν1-axis and the positive ν2-axis points towards C. Then, we
can easily compute

∂g

∂ν1
=
g(B)− g(A)

‖B −A‖
and

∂g

∂ν2
=
g(C)− g(C⊥)

‖C − C⊥‖
,

where C⊥ is the orthogonal projection of C on the edge AB. By exploiting the
linearity of g together with the orthogonality relation 〈C−C⊥, B−A〉 = 0, from
(17) we obtain∫∫

Γ′
h

g

(
∂

∂ν1
− i ∂

∂ν2

)
δp dΓ′h

=
g(A)− g(B)

‖B −A‖
+ i

g(C)− (g(A) + Θ(g(B)− g(A)))

‖C − C⊥‖
, (18)

where

Θ =
〈C −A,B −A〉
‖B −A‖2

.

Thus, we have a closed form for the right-hand side of (16) in the discrete setting.
During the mesh simplification process in Section 2, we fix the triangle4ABC

containing the point p, i.e., we add the requirement that the simplified mesh must
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preserve the triangle 4ABC . In particular, this triangle will coincide with the el-
ement removed from the triangulated surface before the flattening, i.e., the image
of 4ABC via the map X−1 will identify the domain Ω ⊂ R2. Since during the
flattening phase the interior of the triangle 4ABC is removed, the only data asso-
ciated with it occurs at the vertices A, B, and C so that no data is lost. Moreover,
fixing the same triangle in the original mesh for each simplification standardizes
the flattening procedure for more appropriate comparisons. Figure 10 shows the
fixed triangle for the pawn geometry in Figure 8, specifically, for the original mesh
(left), for the Data+Geo simplification (center) and for the OnlyGeo simplifica-
tion (right). For the cortical surface mesh, we fix the triangle whose barycenter is
closest to the center of mass of the original vertices of the mesh.

Figure 10: The fixed triangle selected for the pawn simplifications is located on
the bottom of the pawn and does not change during the simplification process: the
original triangulation Γ′h (left), the 1000 node mesh yielded by the Data+Geo
(center), and the OnlyGeo (right) simplifications.

Now, let us come back to the approximation of problem (16). It is well-known
that X−1 is the minimizer of the functional

1

2

∫∫
Γ′
h

(
‖∇Γ′

h
X−1‖2 + 2X−1

(
∂

∂ν1
− i ∂

∂ν2

)
δp

)
dΓ′h, (19)

where ∇Γ′
h

is defined analogously to ∇Γ in (11). Using this definition and by
exploiting (17), it can be shown thatX−1 satisfies (16) if and only if, for all smooth
test functions g, we have∫∫

Γ′
h

∇Γ′
h
X−1 · ∇Γ′

h
g dΓ′h =

(
∂g

∂ν1
− i ∂g

∂ν2

)∣∣∣∣
p

. (20)

Thus, an approximation to the conformal map is found by finding X−1 ∈ Vh(Γ′h)
such that (20) holds for any g ∈ Vh(Γ′h). In particular, since (20) is linear in g, it
is enough to guarantee the condition (20) for any basis function ψk ∈ Vh(Γ′h) after
expanding X−1 in terms of the basis {ψj}. Hence, we are led to solve a linear
system that finds a complex number X−1(vj) = u1j + i u2j for each vertex vj of

19



the simplified mesh Γ′h, with j = 1, . . . ,m, and such that

m∑
j=1

X−1(vj)

∫∫
Γ′
h

∇Γ′
h
ψj · ∇Γ′

h
ψk dΓ′h =

(
∂ψk
∂ν1
− i∂ψk

∂ν2

)∣∣∣∣
p

, (21)

for k = 1, . . . ,m. Notice that (u1j , u2j) identifies the location of the vertex vj of
Γ′h in the corresponding flattened mesh denoted in the following by Ω′h.

Let D denote the stiffness matrix in (21). The components of the stiffness
matrix,

Djk =

∫∫
Γ′
h

∇Γ′
h
ψj · ∇Γ′

h
ψk dΓ′h,

can be computed by resorting to a well-known cotangent formula. This formula is
based on the conformal invariance of the energy functional

E(X−1) =
1

2

∫∫
Γ′
h

‖∇Γ′
h
X−1‖2 dΓ′h, (22)

with respect to conformal changes of domain metric (see [23] for more details).
For a triangle T1 ∈ Γ′h, the energy reduces to

E(X−1)
∣∣
T1

=
1

4

3∑
j=1

cot θj‖ẽj‖2Ω′
h
, (23)

where θj is an angle of T1 while ‖ẽj‖Ω′
h

denotes the length of the edge opposite

to θj in the corresponding triangle T̃1 ∈ Ω′h (see Figure 11). As a consequence,
we can define the energy associated with the map X−1 as the sum of the energy of
each triangle in the mesh, i.e.,

E(X−1) =
∑
T∈Γ′

h

E(X−1)
∣∣
T

=
1

4

∑
ẽj∈Ω′

h

(cot θj + cot θk) ‖ẽj‖2Ω′
h

(24)

where ẽj is the generic edge of Ω′h with end points ṽj and ṽk, while θj and θk
denote the angles opposite ej in the two adjacent elements (see Figure 11). The
energy thus coincides with a weighted sum of edge lengths. From (24), a generic
component of the stiffness matrix D can be computed as

Djk = −1

2
(cot θj + cot θk) , (25)

if vj and vk are connected by an edge and zero otherwise ([16]). Moreover, the diag-
onal entries of D are defined by Djj = −

∑
k 6=j Djk, since we have

∑
j Djk = 0.

Then, to find the planar coordinates u1j and u2j for each vertex of the mesh Γ′h, we

define vectors a, b ∈ Rm with components ak =
(
∂ψk
∂ν1

(p)
)

and bk =
(
∂ψk
∂ν2

(p)
)

,
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Figure 11: Quantities involved in the energy definition.

respectively, for k = 1, . . . ,m. Via (18), we obtain

a− ib :=


0 if vk 6∈ {A, B, C},
−1

‖B−A‖ + i 1−Θ
‖C−C⊥‖ if vk = A,

1
‖B−A‖ + i Θ

‖C−C⊥‖ if vk = B,

i −1
‖C−C⊥‖ if vk = C,

so that the conformal coordinates u1 = (u11, u12, . . . , u1m)t and u2 = (u21, u22, . . . , u2m)t

defining X−1 are the solutions to the linear systems

Du1 = a and Du2 = −b, (26)

respectively. We remark that the choice made for the boundary conditions complet-
ing problem (16) yields a singular stiffness matrix D. However, since both a and
b belong to the orthogonal complement, ker(D)⊥, of ker(D), both the linear sys-
tems in (26) are solvable. In particular, sinceD restricted to ker(D)⊥ is symmetric
positive definite, we solve these systems via the conjugate gradient method.

A critical issue for this formulation is that, for a mesh with obtuse angles like
the ones involved cortical surface applications, the cotangent weights in (25) may
be negative ([2]). As a consequence, the orientation of the edges around a vertex
can change, resulting in overlapping triangles in the planar domain. Moving from
(24), we can heuristically consider the energy E(X−1) as the amount of tension
each triangle places on the edges or, likewise, the vertices. With this interpretation,
a negative cotangent weight works as a repelling force that pushes the vertex away
from the triangle instead of pulling it towards itself. Figure 12 (top) illustrates
the problem. In particular, the vectors h1, h2 and h3 in Figure 12 (top) show the
directions that the triangles T1 = 4v1v2v3 , T2 = 4v1v3v4 and T3 = 4v1v4v5 act on
v1, respectively. The cotangent weight formula applied to the triangle T1 pushes
the vertex v1 towards the triangle T3 causing T1 to overlap T2 and T3 in the planar
domain.

To alleviate the problems due to the negative cotangent weights, we consider
the absolute value of the cotangents in (25) when computing the off-diagonal ele-
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v5

h1

h2

h3

ĥ1
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v1

ṽ1

v3 ṽ3h1

Figure 12: In this configuration the obtuse triangle highlighted in orange has a
negative weight that flips the order of the edges when using (25) (top). Using
the modification in (27), the stiffness matrix uses the acute triangle 4v1v2ṽ3 (or
equivalently4ṽ1v2v3) instead of4v1v2v3 (bottom).

ments Djk, i.e., now

Djk = −1

2
(| cot θj |+ | cot θk|) , (27)

while the diagonal entries are computed so that the property
∑

j Djk = 0 holds.
Notice that the new formula (27) only affects the weights related to obtuse angles
while reducing to formula (25) in the presence of acute angles. In such a way,
each triangle is forced to exert an attractive force on its vertices. For the config-
uration in Figure 12 (top), the modification in (27) produces for the triangle T1

the new direction ĥ1 instead of h1 and pulls the vertex v1 in the proper direction.
Formula (27) effectively substitutes the obtuse angles with their supplementary an-
gles. Hence, the formula in (27) uses the triangle T4 = 4v1v2ṽ3 instead of using
T1 (see Figure 12 (bottom)). Note that T4 and T1 both force v1 in the direction of
h1. However, the components of the corresponding stiffness matrix depend only
on the angles involved and thus similar triangles have the same elemental stiffness.
Now, due to that fact that the edge with vertices v2 and v3 is a constraint for this
configuration, T5 = 4ṽ1v2v3 , the triangle similar to T4 that has v2v3 as an edge,
will be used instead of T4. Hence, the contribution for v1 from T1 calculated via
(27) pulls the triangle T1 in the direction of ĥ1 as shown in Figure 12 (top). This
preserves the orientation of the triangles around v1 and prevents T1 from overlap-
ping neighboring triangles in the planar domain. The idea of using the absolute
value of the cotangent weights is also implemented in [20]. Figure 13 shows the
benefits of employing formula (27) instead of the standard one (25).

As a last step of the flattening procedure the map X−1 is evaluated at the data
points wj = X−1(xj) with j = 1, . . . , n, that have been projected from Γh to Γ′h
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v
v

Figure 13: Flattening via formula (25) (left) and via formula (27) (right)

via the simplification process to obtain their planar locations in Ω′h.

3.3 A finite element approximation for the estimation problem

To get a finite element approximation of the estimation problem (15), we properly
reformulate this problem by introducing an auxiliary function. Essentially, we aim
at reducing the regularity assumption of f̂ ◦X . The introduction of the unknown
auxiliary function leads us to rewrite (15) as a system of coupled equations: find
(f̂ ◦X, γ ◦X) ∈ (H1

n0,K(Ω) ∩ C0(Ω̄))×H1(Ω) such that

µtnf̂n − λ
∫

Ω
K∇(µ ◦X) · ∇(γ ◦X)dΩ = µtnz∫

Ω
(ξ ◦X)(γ ◦X)WdΩ +

∫
Ω
∇(ξ ◦X)K∇(f̂ ◦X)dΩ = 0, (28)

for any (µ◦X, ξ◦X) ∈ (H1
n0,K(Ω)∩C0(Ω̄))×H1(Ω),whereH1

n0,K(Ω) consists
of functions in H1(Ω) whose co-normal derivative is identically equal to zero on
∂Ω. The regularity of the problem guarantees the solution, f̂ ◦X , still belongs to
H2
n0,K(Ω).

Now, analogously to Section 3.2.1, we introduce the linear finite element space
Vh(Ω′h) associated with the flattening Ω′h of the simplified surface Γ′h. We recall
that the dimension of the space Vh(Ω′h) coincides with the number of nodes of the
flattened mesh Ω′h. Then, we can state the discrete counterpart of the estimation
problem (28), which leads us to find (f̂ ◦X, γ ◦X) ∈ Vh(Ω′h)× Vh(Ω′h) such that
(28) holds for any (µ◦X, ξ ◦X) ∈ Vh(Ω′h)×Vh(Ω′h), where the integrals are now
computed over Ω′h. To provide an algebraic counterpart of the discrete formulation,
we introduce the mass and stiffness finite element matrices given by

R0 =

∫
Ω′

h

ψ̃ψ̃tWdΩ′h ∈ Rm×m and R1 =

∫
Ω′

h

∇ψ̃tK∇ψ̃ dΩ′h ∈ Rm×m,

respectively, where ψ̃ = (ψ̃1, . . . , ψ̃m)t is the column vector of the m finite ele-
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ment basis functions for Vh(Ω′h). That is, for any g ∈ Vh(Ω′h)

g(·) =

m∑
j=1

g(ṽj)ψ̃j(·) = gtψ̃(·), where g = (g(ṽ1), . . . , g(ṽm))t ∈ Rm (29)

is the column vector of evaluations of g at the m nodes ṽj of the mesh Ω′h. Define

Ψ̃ =

 ψ̃
t(w1)

...
ψ̃t(wn)

 ∈ Rn×m,

to be the matrix of the m basis functions evaluated at the n data locations. Extend-
ing the arguments detailed in [9] to the case where the data does not necessarily
occur at the vertices of the mesh, the discrete counterpart of the estimation problem
(28) reduces to finding the pair of coefficient vectors (f̂ ,γ) ∈ Rm×Rm such that,
for any (µ, ξ) ∈ Rm × Rm, we have{

µtΨ̃tΨ̃f̂ − λµtR1γ = µtΨ̃tz

ξtR0γ + ξtR1f̂ = 0,

with Ψ̃f̂ = f̂n and Ψ̃µ = µn where 0 ∈ Rm denotes the null vector, f̂ , γ, µ, ξ
are defined according to (29) and z is as defined in (28). Then, the estimator
f̂ ◦ X ∈ Vh(Ω′h) that solves the discrete counterpart of the estimation problem is
given by f̂ ◦X = f̂ tψ̃, where f̂ satisfies[

−Ψ̃tΨ̃ λR1

λR1 λR0

] [
f̂
γ

]
=

[
−Ψ̃tz
0

]
, (30)

and γ is the component vector associated with the auxiliary function γ employed
in (28). Moreover, for a given X , f̂ ◦ X is uniquely determined. From (30) it
follows that

f̂ =
(

Ψ̃tΨ̃ + λR1R
−1
0 R1

)−1
Ψ̃tz. (31)

Notice that the estimate f̂ is linear in the observed data and has a typical penalized
regression form (see, e.g., [24]). Thus, classical inferential tools can be applied,
such as approximate confidence bands for f and approximate prediction intervals
for new data locations. Moreover, (31) yields a closed form for a Generalized-
Cross-Validation (GCV) criterion that can be used to select the smoothing param-
eter λ. We refer to [9] for more details.

Remark 3.1 In many neuroimaging applications it could be extremely interesting
to include covariate information in the model. For instance, when studying hemo-
dynamic signals over the cortical surface in response to a stimulus, it would be
interesting to take into account the thickness of the cortical surface at each loca-
tion as a covariate since the thickness of the cortical surface may indeed influence
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the size of the hemodynamic signal. The covariate inclusion leads, in general, to
a more in-depth analysis by preventing the compounding of the results with other
information that is varying along with the quantity of interest. Through a semi-
parametric framework, the model presented in this paper can also be extended to
include space-varying covariate information following [9].

4 Simulation studies

In this section, we show the good performance of the proposed technique on the
pawn geometry introduced in Figure 8. In particular, our goal is to verify that the
mesh simplification procedure described in Section 2 produces a mesh that can
lead to good statistical estimates, comparable with the ones on the original mesh.
For this purpose, we also compare the proposed approach with the Iterative Heat
Kernel (IHK) smoothing developed specifically for neuroimaging applications in
[4]. The mesh simplification procedure as well as the simulations presented in this
paper were run with Matlab 7.12.0 on 2 GHz Intel Core i7 processor in a MacBook
Pro with a 256GB Solid State hard drive.

The IHK method works directly on the mesh without any flattening. To do this,
a Laplace-Beltrami eigenvalue problem is solved directly on the surface Γ, i.e., or-
dered eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · and the corresponding eigenfunc-
tions φ0, φ1, φ2, . . . are found by solving the eigenvalue problem −∆Γφj = λjφj
on Γ. Thus, a heat kernel with bandwidth B is constructed from the eigenvalue-
eigenfunction pairs {(λj , φj)} as

KB(p, q) =
∞∑
j=0

e−λjBφj(p)φj(q),

where p and q are two generic points on Γ. The heat kernel smoothing of the quan-
tity of interest zj in (8), is thus given by KB ∗ zj =

∑∞
l=0 e

−λlBβl(xj)φl(xj),
where βl(xj) = 〈zj , φl(xj)〉. In practice, only k eigenvalue-eigenfunction pairs
are selected via an iterative residual fitting algorithm. For a fixed bandwidth, the
level of smoothing is determined by an optimal number of eigenfunctions selected
via the F-test criterion outlined in [4].

For the simulations based on the IHK method, we use the full mesh of the pawn
constituted by 2527 vertices. Note we cannot use the IHK method on a simplified
mesh since the method is currently devised to only work on data observed at the
vertices of the mesh. The bandwidth B has been heuristically chosen by select-
ing the one with the best performance after some test runs. In particular, we set
B = 10−2.5. Then, the optimal number of eigenfunctions is selected via the F-test
criterion for each simulation replicate.

For the SR-NP method, we use the two mesh simplification strategies intro-
duced in Section 2.3 with several levels of simplification and show how the re-
sulting estimates compare to the IHK results on the full mesh. The levels of sim-
plification we use are provided by selecting m = 1000, 1200, 1400, 1600, 1800,
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2000 vertices. The results obtained for the 1000 node simplified meshes, using the
Data+Geo and the OnlyGeo approaches are shown in Figure 8 (center and right,
respectively). For the sake of completeness, we also compare the results to the
SR-NP method using the original mesh seen in Figure 8 (left). For each simula-
tion replicate over each simplified mesh, the smoothing parameter λ for the SR-NP
method is chosen by GCV.

In more detail, first we generate simulated data on the original mesh of the
pawn. To do this, we consider fifty test functions of the form

f(x1, x2, x3) = a1 sin(2πx1) + a2 sin(2πx2) + a3 sin(2πx3) + 1, (32)

with coefficients aj , for j = 1, 2, 3 randomly generated from independent normal
distributions with mean one and standard deviation one, where the data locations
xj , for j = 1, . . . , n, coincide with the nodes of the original three-dimensional
mesh. Noisy data values zj are obtained by adding independent normally dis-
tributed errors with mean zero and a standard deviation 0.5 to f at each of the
data locations, i.e., we have zj = f(x1j , x2j , x3j) + εj , for j = 1, . . . , n, with
εj ∼ N(0, 0.5). Figure 14 shows a simulation example, specifically, a sample test
function generated by (32) in (a), the corresponding noisy observations zi in (b), the
IHK estimate computed on the original mesh in (c), the SR-NP estimate obtained
on the 1000 node meshes yielded by the Data+Geo and the OnlyGeo simplifica-
tions in (d) and (e), respectively. We see that, despite using less than half the nodes,
the SR-NP method is able to detect more of the function variation with respect to
the IHK approach. This is most evident on the base of the pawn. Furthermore, via
the even data distribution shown in Figure 8 (center), the Data+Geo simplification
maintains an even level of smoothing over the entire pawn. On the contrary, the
estimates computed on the simplified mesh obtained via the OnlyGeo approach
over-smoothes on the top left-hand side of the pawn, as seen in Figure 14 (e).

The superior performance of the SR-NP method combined with the Data+Geo
simplification is more evident in Table 1 and Figure 15, where more quantitative
information can be inferred. In particular, for each mesh simplification and simu-
lation replicate, we compute the Mean Square Error (MSE) of the estimate, i.e., the
mean square distance between the true function f and its estimate f̂ . A lower MSE
means a more efficient estimate, characterized by lower bias (i.e., lower systematic
errors) and lower variance. In Table 1, we provide the median MSEs computed
over the fifty simulation replicates and, within parentheses, the corresponding In-
ter Quartile Range (IQR) which quantifies the variability of the MSEs over the fifty
replicates. This information can be derived also from the box-plots in Figure 15
which illustrate graphically the comparison among the different methods. Table 1
and Figure 15 highlight that, as expected, the SR-NP method with the simplifica-
tion based on the overall cost function, Data+Geo, produces better results than
the SR-NP method with the simplification driven only by geometric information,
OnlyGeo. In particular, for all levels of mesh simplification except for the least
simplified mesh (m = 2000), both the median MSEs and the corresponding IQRs
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Table 1: Median (IQR) of the Mean Square Errors of the estimates obtained in
the 50 simulation repetitions over the pawn and the p-values of pairwise Wilcoxon
tests verifying that the MSEs of the SR-NP estimates are significantly lower than
those for IHK estimates.

Method m Simplification MSE p-value

SR-NP 1000 Data+Geo 0.0662 (0.0281) 0.0447
OnlyGeo 0.0903 (0.0494) 0.7316

SR-NP 1200 Data+Geo 0.0569 (0.0226) 0.0015
OnlyGeo 0.0839 (0.0489) 0.4386

SR-NP 1400 Data+Geo 0.0453 (0.0206) 2.207×10−8

OnlyGeo 0.0698 (0.0483) 0.0963
SR-NP 1600 Data+Geo 0.0443 (0.0198) 3.100×10−9

OnlyGeo 0.0528 (0.0285) 1.801×10−5

SR-NP 1800 Data+Geo 0.0447 (0.0207) 2.762×10−9

OnlyGeo 0.0467 (0.0190) 1.979×10−8

SR-NP 2000 Data+Geo 0.0416 (0.0208) 4.139×10−10

OnlyGeo 0.0378 (0.0163) 3.895×10−10

SR-NP 2527 0.0351 (0.0148) 3.895×10−10

IHK 2527 0.0717 (0.0978)

associated with the Data+Geo approach are lower than the OnlyGeo ones, corre-
sponding to more accurate and more precise estimates. In the last row of the table,
we compare the SR-NP approach with the IHK method on the original mesh. The
SR-NP method combined with the simplification strategy driven by both data and
geometry controls produces better results in terms of estimates with lower error
(the MSEs have a lower median) and more robustness (the MSEs have a smaller
IQR). On the other hand, we observe that if we combine the SR-NP method with
the simplification strategy driven only by the geometric information, we need a
mesh with at least 1400 vertices to get an estimate with a lower median MSE than
the IHK method. This confirms the importance of including the data information in
the mesh simplification procedure. Now, to quantitatively verify these results, we
use pairwise Wilcoxon tests [30]. The pairwise Wilcoxon test is a non-parametric
statistical hypothesis test that is used here to assess whether the MSEs of SR-NP
estimates are significantly lower than the MSEs of the IHK estimates. In partic-
ular, the lower the p-value for this test the stronger the statistical evidence that
the distribution of MSEs for the SR-NP estimators is stochastically lower than the
corresponding distribution for the IHK estimators. A p-value smaller than 0.05 is
considered significant; values smaller than 0.001 are considered strongly signifi-
cant. In the last column of Table 1, we provide the p-values for pairwise Wilcoxon
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tests. These values verify that the estimates obtained via the SR-NP method on
the original mesh (m = 2527) and on all the Data+Geo simplified meshes have
significantly lower MSEs than the estimates obtained via the IHK method. While
the OnlyGeo simplified meshes require that at leastm ≥ 1600 vertices to produce
significantly lower MSEs with respect to the IHK method.

Finally, we remark that we are able to produce quality statistical estimates (in
terms of MSEs) similar to the ones associated with the original mesh by working,
for instance, on a simplified mesh with 1400 vertices. The mesh simplification pro-
cedure detailed in Section 2 takes 739 seconds and leads to a reduction of the com-
putational time for the statistical analysis from 156 seconds on the original mesh
to 66 seconds on the Data+Geo simplified mesh. Notice that the mesh simplifica-
tion code has not yet been optimized. Several suggestions for future improvements
in this direction are provided in Section 6. As an alternative, by adopting an of-
fline/online paradigm, we may assume to perform the mesh simplification in an
offline phase, while developing an online statistical analysis. As expected, the IHK
method is computationally much cheaper taking only 4 seconds, at a price of a less
accurate statistical analysis as highlighted by Table 1.

As described in [29], a numerical simulation may be corrupted by just a few
“bad elements”, i.e., extremely stretched triangles. To evaluate the level of dis-
tortion of the resulting mesh, we consider the so-called aspect ratio, q [29]. If
q(T ) ≈ 0, the triangle T is stretched, while, for triangles close to the equilateral
one, we have q(T ) ≈ 1. Using the pawn geometry, we analyzed the mean and
minimum values of the aspect ratio of the meshes obtained via the Data+Geo
approach. For all the levels of simplification, the mean of q is around 0.7, while
a more significant variation is exhibited by the minimum value of q ranging from
2.32× 10−4 to 2.35× 10−2. Despite the presence of very stretched triangles in the
simplified mesh, the accuracy of the associated statistical analysis is really satisfy-
ing. A more through investigation of this issue may be of interest in the future.

5 Application to cortical surface data

In this section, we apply the proposed approach to the cortical surface geometry
in Figure 1 (left). In this case, we are dealing with an original mesh with 40962
nodes. First, we apply the proposed method to a simulation study. Then, we apply
it to the real cortical surface thickness data shown in Figure 1 (right) and studied
in [3] and [4].

As in the previous section, we simulate noisy data on the cortical surface mesh
by generating fifty test functions via (32) and by adding independent normally dis-
tributed errors with mean zero and a standard deviation 0.5 to the function values
at each of the data locations. We compare the SR-NP method using the two mesh
simplification strategies proposed in Section 2.3 with several levels of simplifica-
tion to the IHK results on the full mesh. For the IHK method, we set the bandwidth
B = 1, as suggested in [4] for data over this cortical surface mesh, and use the F-
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Figure 16: Example of cortical surface mesh simplification: original mesh with
40962 nodes (left); simplified mesh via the Data+Geo approach with 10000 nodes
(right).

test criterium to determine the level of smoothness as in Section 4. For the SR-NP
method, we consider three levels of mesh simplification, i.e., we generate simpli-
fied meshes with m = 10000, 15000, 20000 nodes (see Figure 16) by applying
both the Data+Geo and the OnlyGeo approaches. For this test case, we do not
give the SR-NP estimate over the original cortical surface mesh because it is com-
putationally expensive.

Table 2 reports the median MSEs and the corresponding IQRs over the fifty
simulation replicates. The SR-NP method consistently produces better results than
the IHK method, while using less than half the original nodes. The employment
of a more complex surface does not seem to compromise the performances of the
proposed procedure. As in the pawn test case, the SR-NP estimates computed
over the Data+Geo simplified meshes are better than the ones computed over the
OnlyGeo meshes. The low p-values of pairwise Wilcoxon tests verify that the
distribution of MSEs for the SR-NP estimators are stochastically lower than the
corresponding distribution for the IHK estimators. Figure 18 displays the box plots
of the MSE values in Table 2. We recognize the same trend as in Figure 15 where
the Data+Geo simplification produces excellent results (with lower errors and
more robust estimates) using fewer nodes. Figure 17 shows a simulation replicate:
an example of a test function generated by (32) in (a), the corresponding level of
noise in (b), the IHK estimate obtained on the original mesh in (c), the SR-NP
estimate on the 10000 node mesh yielded by the Data+Geo and the OnlyGeo
simplifications in (d) and (e), respectively. The SR-NP method is better at detecting
variation in the data. This is most evident in the right hemisphere of the cortical
surface.

Concerning the improvement in terms of computational effort, we remark that
also in this case the employment of a simplified mesh greatly reduces the CPU
times. We are able to produce quality statistical estimates (in terms of MSEs) by
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working on a mesh with less than quarter of the original vertices, i.e., 10000 ver-
tices. This level of simplification reduces the computational time for the analysis
from 3668 seconds on the original mesh to 544 seconds on the simplified mesh. As
for the pawn test case, the time demand for the mesh simplification method is con-
siderable. It takes exactly 20936 seconds. In the absence of a code optimization,
an offline/online paradigm may justify the non-optimal performance of the mesh
simplification algorithm. We note that the IHK method is computationally cheaper
per iteration. Nevertheless, since for each simulation the iterative residual fitting
algorithm needs more iterations to satisfy the F-test criterion, we have that, for the
cortical surface simulations, the IHK method takes a considerably longer time with
respect to the SR-NP approach. In general, we can state that the extra computa-
tional time possibly required by the SR-NP approach allows us to get substantially
better estimates which may be enriched via the inclusion of covariates.

Now, let us consider real cortical surface thickness data. For the IHK method,
we set the bandwidth B = 1 and the number of iterations selected for smoothing
to 200, as suggested for this data set in [4]. For the SR-NP method, we adjust the
smoothing parameter λ to have about the same amount of smoothing as the IHK
method. Essentially, this level of smoothing is set only to highlight areas of interest,
i.e., to identify regions with high or low areas of thickness. The results are shown
in Figure 19. Notice that the SR-NP method with the Data+Geo simplification
is able to identify an additional area of the low thickness (circled in Figure 19
(bottom-left)) with respect to what is detected by the IHK approach and by the same
SR-NP method combined with the OnlyGeo simplification. This low thickness
area is recognizable in the original thickness data (see Figure 19 (top-left)).

6 Conclusions and future developments

The mesh simplification method based on both geometry and data controls con-
sistently produces meshes that lead to quality statistical estimates via the SR-NP
method and outperforms the comparison methods. In particular, the proposed sim-
plification method effectively builds a mesh that approximates the original geom-
etry and properly (in terms of displacement and distribution) associates the data
with the new geometry allowing for subsequent statistical estimates with good in-
ferential properties.

In future research, it is of interest to solve the estimation problem (9) directly
on the non-planar domain Γ, without resorting to a conformal map. This would
undoubtedly lead to a considerable saving in terms of computation time as well as
to a possible improvement in terms of accuracy since the flattening phase could be
skipped. Nevertheless, mapping the estimates to a reference domain could still be
of interest in the context of a multiple patients analysis, allowing for comparisons
across different geometries. Mapping to a reference is indeed a standard way of
proceeding in current population studies, where the data for each patient are reg-
istered to a template surface for reference coordinates (see, e.g., [3] and [4]). The
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Figure 19: The SR-NP estimate on the original mesh (top-left), the IHK estimate
computed on the original mesh (top-right), the SR-NP estimate on the 10000 node
mesh provided by Data+Geo simplification (bottom-left), the SR-NP estimate on
the 10000 mesh generated by the OnlyGeo simplification (bottom-right). The
color map shows the cortical surface thickness. For reference the thickness data on
the original cortical surface mesh is shown in Figure 1.

development of full inferential and uncertainty quantification tools for these pop-
ulation studies within our proposed framework will be the object of a future work

Among our future goals, we aim at providing a more rigorous approach to se-

33



lect the weights involved in the cost function definition, for instance, by applying
some proper optimization procedure that depends on the application and/or the ge-
ometry at hand. Some preliminary studies have been carried out, so far, only on
simple geometric configurations. For instance, it would be of interest to explore
possible ways to relate the number of the mesh nodes, m, with the MSEs of the
estimates. The goal would be to identify the minimal number of nodes that would
lead to a desired level of MSE for a specific application. Furthermore, certain
computational improvements of the simplification procedure are planned, such as,
the employment of a greedy strategy during the edge contraction step. This would
drastically reduce the computational time for the simplification procedure. Finally,
we aim at extending the simplification process to different types of manifolds. For
example, by properly accounting for the boundary edges, the contraction process
can be adapted to manifolds with open boundaries or holes such as in the internal
carotid artery application considered in [9].
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[20] B. LÉVY AND J.-L. MALLET, Constrained discrete fairing for arbitrary meshes, tech. rep.,
GOCAD Consortium, 1999.

[21] J. L. LIONS AND E. MAGENES, Non-Homogeneous Boundary Value Problems and Applica-
tions, vol. III, Springer-Verlag, New York, 1973.
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