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Abstract
We propose an innovative method for the accurate estimation of surfaces and spatial fields

when a prior knowledge on the phenomenon under study is available. The prior knowledge in-

cluded in the model derives from physics, physiology or mechanics of the problem at hand, and

is formalized in terms of a partial differential equation governing the phenomenon behavior,

as well as conditions that the phenomenon has to satisfy at the boundary of the problem do-

main. The proposed models exploit advanced scientific computing techniques and specifically

make use of the Finite Element method. The estimators have a penalized regression form and

the usual inferential tools are derived. Both the pointwise and the areal data frameworks are

considered. The driving application concerns the estimation of the blood-flow velocity field in

a section of a carotid artery, using data provided by echo-color doppler. This applied problem

arises within a research project that aims at studying atherosclerosis pathogenesis.

Keywords: functional data analysis, spatial data analysis, object-oriented data analysis, penal-

ized regression, Finite Elements.
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1 Introduction
In this work we propose a non-parametric regression technique for surface and spatial field es-

timation, able to include prior knowledge on the shape of the surface or spatial field and to comply

with complex conditions at the boundary of the problem domain. The motivating applied problem

concerns the estimation of the blood-flow velocity field on a cross-section of an artery, using data

provided by echo-color doppler acquisitions. This study is carried out within the project MAth-

ematics for CARotid ENdarterectomy @ MOX2, that gathers researchers in statistics, numerical

analysis and computer sciences and medical doctors in cardiac surgery, with the aim of investigat-

ing the pathogenesis of atherosclerosis in human carotids. The project intends specifically to study

the role of blood fluid-dynamics and vessel morphology on the formation process and histological

properties of atherosclerotic plaques. Interactions between the hemodynamics and atherosclerotic

plaques have been highlighted for instance in Moyle et al. (2006) via numerical simulations of the

blood flow on real patient-specific vessel morphologies.

The data collected within the project include: Echo-Color Doppler (ECD) measurements of

blood flow at a cross-section of the common carotid artery, 2 cm before the carotid bifurcation, for

patients affected by high grade stenosis (>70%) in the internal carotid artery; the reconstruction of

the shape of this cross-section obtained via segmentation of Magnetic Resonance Imaging (MRI)

data. The first phase of the project requires the estimation, starting from these data, of the blood-

flow velocity fields in the considered carotid section. These estimates are first of all of interest

to the medical doctors, as they highlight relevant features of the blood flow, such as the eccen-

tricity and the asymmetry of the flow or the reversion of the fluxes, which could have an impact

on the pathology. Moreover, they will enable a population study that explores quantitatively the

relationship between the blood-flow and the atherosclerosis. Finally, the estimated blood velocity

fields will also be used as patient-specific and physiological inflow conditions for hemodynamics

simulations, that in turns aim at further enhancing the knowledge on this relationship. Analogous

problems in hemodynamics are described in D’Elia et al. (2012), D’Elia and Veneziani (2012) and

in Rozza et al. (2012).

Carotid Echo-Color Doppler (ECD) is a medical imaging procedure that uses reflected ultra-

sound waves to create images of an artery and to measure the velocity of blood cells in some

locations within the artery. This technique does not require the use of contrast media or ionizing
2The MACAREN@MOX project involves Ca’ Granda Ospedale Maggiore Policlinico - Milano, the MOX Labora-

tory for Modeling and Scientific Computing - Dipartimento di Matematica - Politecnico di Milano, the Dipartimento
di Ingegneria - Università degli studi di Bergamo, and the Mathematics Institute of Computational Science and Engi-
neering - École Polytechnique Fédérale de Lausanne.
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Figure 1: Left panel: ECD image corresponding to the central point of the carotid section located
2 cm before the carotid bifurcation. Right panel: MRI reconstruction of the cross-section of the
carotid artery located 2 cm before the carotid bifurcation; cross-shaped pattern of observations
with each beam colored according to the mean blood-velocity measured on the beam at systolic
peak time.

radiation and has relative low cost. Thanks to this complete non-invasivity and also to the short ac-

quisition time required, ECD scans are largely used in clinics, even though they provide a less rich

and noisier information than other diagnostic devices, such as Phase Contrast Magnetic Resonance

Imaging. Figure 1, left panel, shows one of the ECD images used in the study. The ultrasound

image in the upper part of the figure represents the longitudinal section of the vessel. It also shows

by a small gray box the position of the beam where blood particle velocities, in the longitudinal

direction of the vessel, are measured; the dimension of the box relates to the dimension of the

beam. In the case considered in this picture, the acquisition beam is located in the center of the

considered cross-section of the artery. The lower part of the ECD image is a graphical display of

the acquired velocity signal during the time lapse of about three heart beats. This signal represents

the histogram of the measured velocities, evolving in time. More precisely, the x-axis represents

time and the y-axis represents velocity classes; for any fixed time, the gray-scaled intensity of

pixels is proportional to the number of blood-cells in the beam moving at a certain velocity. For

the purpose of this work, we shall consider a fixed time instant corresponding to the systolic peak,

which is of crucial clinical interest.

Figure 1, right panel, shows the reconstruction from MRI data of the considered cross-section

of the carotid artery; it also displays the spatial locations of the beams inspected in the ECD scan.

In particular, during the ECD scan 7 beams are considered, located in a cross-shaped pattern;

this unusual pattern is a compromise decided together with clinicians in order to obtain as many

observations as possible in the short time dedicated to the acquisition. In the figure each beam is
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colored according to the value of the mean velocity registered within the beam at the fixed time

instant considered, the systolic peak.

In this applied problem there are important conditions at the boundary of the problem domain,

i.e., specifically, at the wall of the carotid cross-section represented in Figure 1, right panel. The

physics of the problem implies in fact that blood-flow velocity is zero at the arterial wall, due to the

friction between blood cells and arterial wall; these are the so-called no-slip boundary conditions.

Classical methods for surface estimation, as tensor product of unidimensional splines, thin-

plate splines, bidimensional kernel smoothing, bidimensional wavelet-based smoothing and krig-

ing, are naturally defined on tensorized domains and do not efficiently deal with more complex

domains, when the shape of the domain is important for the behavior of the phenomenon under

study. Moreover, they cannot naturally include information on the value of the surface at the

boundary, although it is possible to enforce such boundary conditions for example with binning.

Recently, some methods have been proposed where the shape of the domain and the boundary

conditions are instead directly specified in the model. For instance, Finite Element L-splines de-

scribed in Ramsay (2002) account explicitly for the shape of the domain, efficiently dealing with

irregular shaped domains; soap-film smoothing (SOAP), described in Wood et al. (2008), consid-

ers both the shape of the domain and some common types of boundary conditions; Spatial Spline

Regression (SSR), presented in Sangalli et al. (2013), extends Ramsay (2002) and includes general

boundary conditions. The methods in Ramsay (2002), Wood et al. (2008) and Sangalli et al. (2013)

are penalized regression methods with a roughness term involving the Laplacian of the field, the

Laplacian being a simple form of partial differential operator that provides a measure of the local

curvature of the field. Although being able to account for the shape of the domain and to comply

with the required boundary conditions, these methods do not provide physiological estimates of

the blood flow velocity field. Figure 2 shows for example the velocity field estimated using SSR.

The penalization of a measure of the local curvature of the field oversmooths and flattens the field

toward a plane in those regions of the domain where no observations are available; the resulting

estimated velocity field has thus rhomboidal isolines, which are certainly non-physiological.

On the other hand, we have prior knowledge on the phenomenon under study that could be

exploited to derive accurate physiological estimates. There is in fact a vast literature devoted to

the study of fluid dynamics and hemodynamics, see for example Formaggia et al. (2009) and ref-

erences therein. For what serves our purpose, it suffices to know that the theoretical solution of

a stationary velocity field in a straight pipe with circular section has a parabolic profile. In our

application, during the systolic phase, we hence expect to obtain a velocity field similar in shape
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Figure 2: Estimate of the blood-flow velocity field on the carotid section using standard SSR.

to a parabolic profile, with smooth isolines resembling circles. Notice that the real blood velocity

field is not perfectly parabolic due to the curvature of the artery, the non-stationarity of the blood

flow and the imperfect circularity of the artery section. For instance, the curvature of the artery

and the non-stationarity in time of the blood flow may induce asymmetries and eccentricities in the

blood flow. For this reason, imposing a parametric model that forces the estimate to be a parabolic

profile with circular isolines would not be appropriate; such a model would, for instance, com-

pletely miss the physiological asymmetries and eccentricities of the flow. Nevertheless, this prior

information concerning the shape of the field, which can be conveniently translated into a par-

tial differential operator, could be incorporated in a non-parametric model, along with the desired

boundary conditions. Partial Differential Equations (PDEs) are a multidimensional extension of

Ordinary Differential Equations (ODEs); their study though requires different and more complex

analytical and numerical techniques with respect to those used for ODEs; see, e.g., Evans (1998).

In this work, extending Ramsay (2002) and Sangalli et al. (2013), we propose a non-parametric

model that includes prior information on the phenomenon under study, coming for instance from

the physics, physiology, mechanics or chemistry of the problem, and formalized in terms of a gov-

erning PDE. Specifically, Spatial Regression with PDE penalization (SR-PDE) features a rough-

ness term that involves, instead of the simple Laplacian, a more general PDE modeling the phe-

nomenon. The applicability of the proposed method is by no way restricted to the problem here

considered; PDEs are in fact commonly used to describe complex phenomena behavior in many

fields of engineering and sciences, including bio-sciences, geo-sciences and physical sciences.

Applications of particular interest in the environmental sciences concern e.g. the study of the dis-
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persion of pollutant released in water or in air and transported by streams or winds, the study

of temperature, pressure and electromagnetic fields, the study of the propagation of earthquakes,

tsunamis and other wave phenomena. Important applications in biomedicine include also the study

of electrophysiology and mechanics of organs and the study of tumor growth dynamics. It should

be noticed that many methods for surface and spatial field estimation, besides the already cited

SSR and SOAP, use roughness penalties involving some simple form of PDEs. A classical exam-

ple is given by thin-plate-splines, while a recent proposal is offered for instance by Guillas and

Lai (2010). Our work has also strong connections with the framework introduced by Lindgren

et al. (2011), and more generally with the larger literature on Bayesian inverse problem, see,

e.g., Stuart (2010). In particular, Lindgren et al. (2011) proposes Bayesian spatial models that

link Gaussian fields and Gaussian Markov random fields via a stochastic PDE inducing a Matérn

covariance. One important novelty of the proposed SR-PDE models with respect to the meth-

ods cited above is that the PDE is here used to model the space variation of the phenomenon,

using problem-specific information. Moreover SR-PDE allows for important modeling flexibility

in this respect, accounting also for space anisotropy and non-stationarity in a straightforward way,

as well as unidirectional smoothing effects. The approach used to solve the surface estimation

problem borrows techniques from PDEs control theory, see for example Hinze et al. (2009), Lions

(1971) and Quarteroni (2008). However, the viewpoint that we have in this work is quite different

from the classical control theory framework, where the main interest is focused on surface estima-

tion starting from integral targets, usually known without error, instead of partial, pointwise and

noisy observations. For this reason, different questions have to be addressed in our framework,

with respect to those classically considered in control theory. Finally, the smoothing method here

proposed could in principle be further extended also to a larger class of penalty terms, including

higher-order operators or non-linear operators, provided that the associated differential problems

are well posed. However, their numerical approximation may become much more involved.

Likewise in Ramsay (2002) and Sangalli et al. (2013), SR-PDE exploits advanced numerical

analysis techniques and, specifically, it makes use of the Finite Element Method, which provides

a basis for piecewise polynomial surfaces. The resulting estimators have a penalized regression

form, they are linear in the observed data values and classical inferential tools can be derived. The

proposed method is currently implemented in R, see R Development Core Team (2012), and in

FreeFem++, see Pironneau et al. (2011).

The paper is organized as follows. Section 2 introduces SR-PDE for pointwise observations.

Section 3 extends the models to the case of areal data, which is of interest in many applications, in-
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cluding the analysis of ECD measurements here considered. Section 4 describes the Finite Element

solution to the estimation problem and derives the inferential properties of the estimators. Section

5 deals with general boundary conditions. In Section 6, SR-PDE is compared to standard SSR and

to SOAP in different simulation settings, with data distributed uniformly on the domain or only on

some subregions, showing that the inclusion of the prior knowledge on the phenomenon behavior

improves significantly the estimates. In Section 7 the application within the MACAREN@MOX

project is presented: details on the ECD acquisitions are given and the results obtained with SR-

PDE are shown. Section 8 outlines future research directions.

2 Model for pointwise data
Consider a bounded and regular domain Ω ⊂ R2, whose boundary ∂Ω is a curve of class C2,

and n observations zi, for i = 1, . . . , n, located at points pi = (xi, yi) ∈ Ω. Assume the model

zi = f0(pi) + ϵi (1)

where ϵi, i = 1, . . . , n, are independent errors with zero mean and constant variance σ2, and

f0 : Ω → R is the surface or spatial field to be estimated. In our application, Ω will be the carotid

cross-section of interest, the observations zi will represent the blood particles velocities measured

by ECD in the longitudinal direction of the artery (i.e., in the orthogonal direction to Ω) and the

surface f0 will represent the longitudinal velocity field on the carotid cross-section.

Assume that problem specific prior information is available, that can be described in terms of a

PDE, Lf0 = u, modeling to some extent the phenomenon under study; moreover, prior knowledge

could also concern possible conditions that f0 has to satisfy at the boundary ∂Ω of the problem

domain. Generalizing the models in Ramsay (2002) and Sangalli et al. (2013), we propose to

estimate f0 by minimizing the penalized sum-of-square-error functional

J(f) =
n∑

i=1

(f(pi)− zi)
2 + λ

∫
Ω

(
Lf(p)− u(p)

)2
dp (2)

with respect to f ∈ V , where V is the space of functions in L2 (Ω) with first and second derivatives

in L2 (Ω), that satisfy the required boundary conditions (b.c.). The penalized error functional

hence trades off a data fitting criterion, the sum-of-square-error, and a model fitting criterion, that

penalizes departures from a PDE problem-specific description of the phenomenon. Because of the

inclusion of a PDE in the definition of the statistical model, the proposed method can be seen as
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a regularized least square analogous to the Bayesian inverse problems presented, e.g., in Stuart

(2010). In particular, the least square term in J(f) corresponds to a log-likelihood for Gaussian

errors, while the regularizing term effectively translates the prior knowledge on the surface. With

respect to Stuart (2010), besides the different model framework and estimation approaches, we

also deal with a larger class of operators, including non-stationary anisotropic diffusion, transport

and reaction terms.

In particular, we consider here phenomena that are well described in terms of linear second

order elliptic operators L and forcing term u ∈ L2(Ω) that can be either u = 0, homogeneous

case, or u ̸= 0, non-homogeneous case. The operator L is a general differential operator that can,

for instance, include second, first and zero order differential operators. Consider a symmetric and

positive definite matrix K = {Kij}i,j=1,2 ∈ R2×2, named diffusion tensor, a vector b = (b1, b2) ∈
R2, named transport vector, and a positive scalar c ∈ R+, named reaction term. Then, the operator

can include: second order differential operators as the divergence of the gradient, i.e.,

div(K∇f) = ∂

∂x

(
K11

∂f

∂x
+K12

∂f

∂y

)
+

∂

∂y

(
K21

∂f

∂x
+K22

∂f

∂y

)
,

first order differential operators as the gradient, i.e.,

b · ∇f = b1
∂f

∂x
+ b2

∂f

∂y
,

and also zero order operators, i.e., cf . The general form that we consider is

Lf = −div(K∇f) + b · ∇f + cf. (3)

The three terms that compose the general second order operator (3) induce an anisotropic and non-

stationary smoothing, providing different regularizing effects. The diffusion term −div(K∇f)
induces a smoothing in all the directions; if the diffusion matrix K is a multiple of the identity

the diffusion term has an isotropic smoothing effect, otherwise it implies an anisotropic smoothing

with a preferential direction that corresponds to the first eigenvector of the diffusion tensor K. The

degree of anisotropy induced by the diffusion tensor K is controlled by the ratio between its first

and second eigenvalue. It is possible to visualize the diffusion term as the quadratic form in R2

induced by the tensor K−1. On the contrary the transport term b · ∇f induces a smoothing only

in the direction specified by the transport vector b. Finally, the reaction term cf has instead a

shrinkage effect, since penalization of the L2 norm of f induces a shrinkage of the surface to zero.
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Figure 3: Left: stationary and isotropic diffusion tensor K = I used in the blood-flow velocity
field application for SSR. Center and Right: non-stationary and anisotropic diffusion tensor field
K and non-stationary transport field b, used in the blood-flow velocity field application for
SR-PDE: the displayed tensor field K smooths the observations in the tangential direction of
concentric circles, while the transport field b smooths the observations in the radial direction,
from the center of the carotid section to the arterial wall.

Setting K = I, b = 0, c = 0 and u = 0 we obtain the special case described in Ramsay (2002)

and Sangalli et al. (2013), where the penalization of the Laplacian ∆f induces an isotropic and

stationary smoothing.

The parameters of the differential operator L can also be space-varying on Ω; i.e., K =

K(x, y), b = b(x, y) and c = c(x, y). This feature is fundamental to translate the a priori informa-

tion on the phenomenon. For instance, in the blood flow velocity application, the problem specific

prior information can be described via an appropriate anisotropic and non-stationary differential

operator that includes: a non-stationary anisotropic diffusion tensor that smooths the observations

in the tangential direction of concentric circles (see Figure 3 Center); a non-stationary transport

field that smooths the observations in the radial direction, from the center of the section to the

boundary (see Figure 3 Right). The reaction term is instead not required in this application. The

non-stationary and anisotropic diffusion tensor field K used in the application and represented in

the central panel of Figure 3 can be compared to the stationary and isotropic diffusion tensor field

K = I used in SSR and represented in the left panel of Figure 3. Notice that the space-varying pa-

rameters need to satisfy some regularity conditions to ensure that the solution of the corresponding

PDE is regular enough for the estimation problem to be well-posed (see Section 1 in the Supple-

mentary Material available online). The functional J(f) is well defined if f ∈ V since V ⊂ C(Ω̄)

if Ω ⊂ R2 and the misfit of the PDE is square integrable.

We can impose different types of boundary conditions, homogeneous or not, that involve the

evaluation of the function and/or its first derivative at the boundary, allowing for a complex mod-

9



eling of the behavior of the surface at the boundary ∂Ω of the domain. For ease of notation we

consider in the following the simple case of homogeneous Dirichlet b.c., which involve the value

of the function at the boundary, clamping it to zero, i.e., f |∂Ω = 0. These boundary conditions

correspond to the physiological no-slip conditions needed in the ECD application; the blood cells

have in fact zero longitudinal velocity near the arterial wall due to friction between the blood par-

ticles and the arterial wall. In Section 2 of the Supplementary Material available online we extend

all the results presented in this section to the case of more general non-homogeneous boundary

conditions that can also involve first derivatives. In this work the boundary conditions are directly

included in the space V ; in the case of Dirichlet homogeneous b.c., V is the space of functions in

L2 (Ω) with first and second derivatives in L2 (Ω) and zero value at the boundary ∂Ω.

To lighten the notation, surface integrals will be written without the integration variable p;

unless differently specified, the integrals are computed with respect of the Lebesgue measure, i.e.,∫
D
q =

∫
D
q(p)dp, for any D ⊆ R2 and integrable function q.

All the results presented can also be extended to include space-varying covariate information,

following the semi-parametric approach described in Sangalli et al. (2013).

2.1 Solution to the estimation problem
The estimation problem can be formulated as follows.

Problem 1. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J(f).

Proposition 1. Under suitable regularity conditions for L, the solution of Problem 1 exists and is

unique.

The required regularity conditions, the proof of Proposition 1 and the solution of the estimation

problem are detailed in Section 1 of the Supplementary Material available online. The key idea

consists in exploiting the linearity of the PDE penalized in the roughness term in order to prove the

convexity of the functional J(f). The minimum is then obtained by differentiating the functional

J(f) with respect to f . The differentiation of the functional J(f) provides an explicit expression

for the surface estimate f̂ as the solution of a linear fourth order problem. A convenient way to

solve this fourth order problem is to split it into the following coupled system of second order

PDEs: {
Lf̂ = u+ ĝ in Ω

f̂ = 0 on ∂Ω

{
L∗ĝ = − 1

λ

∑n
i=1(f̂ − zi)δpi

in Ω

ĝ = 0 on ∂Ω
(4)
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where ĝ represents the misfit of the penalized PDE, i.e., ĝ = Lf̂ − u, L∗ is the adjoint operator of

L, i.e., is such that
∫
Ω
Lφψ =

∫
Ω
φL∗ψ for all φ, ψ ∈ V , and is defined as

L∗ĝ = −div(K∇ĝ)− b · ∇ĝ + (c− div(b))ĝ. (5)

The coupled system of PDEs (4) is then solved by means of the Finite Element method, which is a

standard technique used to solve PDEs (see, e.g., Quarteroni (2008)), in order to obtain a piecewise

polynomial discretization of the surface estimate.

3 Model for areal data
We here extend the surface smoothing method presented in the previous Section to the case of

areal data, a setting common in many applications, including the one driving our study.

Let Di ⊂ Ω, for i = 1, . . . , N , be some subdomains where we have observations and zij , for

j = 1, . . . , ni, be the observations located at point pij ∈ Di. For the observations zij , we consider

the pointwise model (1), i.e.,

zij = f0(pij) + ϵij (6)

where ϵij , for i = 1, . . . , N and j = 1, . . . , ni, are independent errors with zero mean and constant

variance σ2.

In the blood flow velocity application, the location points pij are unknown, the only available

information being that pij ∈ Di, where Di is the i-th ECD acquisition beam. We may assume

that the location points pij are distributed over the subdomains according to a global uniform

distribution over Ω and that the subdomains are not overlapping. For each beam Di, the ECD

signal (Figure 1, left panel) provides, at a fixed time, a histogram of the measured blood particle

velocities. We summarize the information carried by the histogram by its mean value. Specifically,

let z̄i be the mean value of the observations on the subdomain Di, for i = 1, . . . , N . From (6), we

can derive the following model for this variable:

z̄i =
1

ni

ni∑
j=1

f0(pij) +
1

ni

ni∑
j=1

ϵij

where
∑ni

j=1 ϵij/ni, i = 1, . . . , N , are errors with zero mean and variance σ2/ni.

The quantity
∑ni

j=1 f0(pij)/ni is the Monte Carlo approximation of E [f0(P )| P ∈ Di] and

the latter is in turn equal to the spatial average of the surface on the subdomain Di, under the
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assumption of uniformly distributed observation points, i.e.,

1

ni

ni∑
j=1

f0(pij) ≈ E [f0(P )|P ∈ Di] =
1

|Di|

∫
Di

f0.

We may thus consider the following model:

z̄i =
1

|Di|

∫
Di

f0 + ηi (7)

where the error terms ηi have zero mean and variances σ̄2
i inversely proportional to the dimension

of the beams Di; this assumption on the variances is coherent with the assumption on location

points being distributed on the subdomains according to a uniform distribution (so that in fact

the average number of observations on each subdomain is proportional to the dimension of the

subdomain). If the subdomains have the same dimension, as it is in fact the case in our application,

this simplifies to variances all equal to σ̄2.

In order to estimate the surface we hence propose to minimize the penalized sum-of-square-

error functional

J̄(f) =
N∑
i=1

1

|Di|

(∫
Di

(f − z̄i)

)2

+ λ

∫
Ω

(Lf − u)2 (8)

with respect to f ∈ V . The first term is now a weighted least-square-error functional for areal

data on the subdomains Di, where the weights are in fact equal to the inverse of the variances σ̄2
i ,

being σ̄2
i ∝ 1/ |Di|. Notice that the functional (8) mixes two different kinds of information: the

data provide information only on the areal means of the surface f over the subdomains, while the

roughness penalty translates the prior knowledge directly on the shape of f .

3.1 Solution to the estimation problem
The estimation problem can be formulated as follows.

Problem 2. Find f̂ ∈ V such that

f̂ = argmin
f∈V

J̄(f).

Proposition 2. Under suitable regularity conditions for L, the solution of Problem 2 exists and is

unique.

Details on the regularity conditions and on the proof are provided in Section 1 of the Sup-

plementary Material available online. The proof follows the same strategy used in the proof of
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Proposition 1. Moreover, using the same arguments as for the pointwise case it can be shown

that the surface estimator f̂ can be obtained by solving a fourth order problem and that the latter

problem can be conveniently split into the following coupled system of second order problems:{
Lf̂ = u+ ĝ in Ω

f̂ = 0 on ∂Ω

{
L∗ĝ = − 1

λ

∑N
i=1

1
|Di|IDi

∫
Di
(f̂ − z̄i) in Ω

ĝ = 0 on ∂Ω
(9)

where ĝ represents the misfit of the PDE penalized, i.e., ĝ = Lf̂ −u, and L∗ is the adjoint operator

of L, defined in (5). As in the pointwise case the coupled system of PDEs (9) is then discretized

by means of the Finite Element method.

Remark 1. All the results presented in this section can be extended to the case of location points

distributed on the subdomains according to a general known global distribution µ over Ω, P ∼
µ. The quantity

∑ni

j=1 f0(pij)/ni is in fact, also in this case, the Monte Carlo approximation of

E [f0(P )|P ∈ Di]:

1

ni

ni∑
j=1

f0(pij) ≈ E [f0(P )|P ∈ Di] =
1

µ(Di)

∫
Di

f0(p)µ(dp).

Therefore the model for the areal mean on the subdomains becomes:

z̄i =
1

µ(Di)

∫
Di

f0(p)µ(dp) + ηi.

Under the assumption of non overlapping subdomains, the errors ηi have zero mean and variances

inversely proportional to µ(Di), which is the probability of sampling a point in the subdomain Di.

The surface estimator f̂ can be obtained minimizing the weighted least square functional

J̄µ(f) =
N∑
i=1

1

µ(Di)

(∫
Di

(f(p)− z̄i)µ(dp)

)2

+ λ

∫
Ω

(Lf − u)2

with respect to f ∈ V . The weights in the least square term are proportional to the inverse of

Var(z̄i), being Var(z̄i) ∝ 1/µ(Di).

4 Finite Element solution to the estimation problem
The surface estimation problems in the pointwise and areal data frameworks presented respec-

tively in Sections 2 and 3 are infinite dimensional problems and cannot be solved analytically. A

13



−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Figure 4: Left: Triangulation of the carotid cross-section used in the blood-flow velocity field
application. Right: Illustration of a linear Finite Element basis function on a triangulation.

standard approach to handle these problems is to reformulate them in a proper finite dimensional

subspace that approximates the original infinite dimensional one. This approach is used in many

fields of statistics and applied mathematics, e.g., non-parametric statistics, functional and spatial

data analysis and analysis of differential equations. In particular the standard method used in nu-

merical analysis to solve PDEs is the Finite Element method (see, e.g., Quarteroni (2008)) which

provides a basis for continuous piecewise polynomial surfaces over a triangulation of the domain

of interest. The discretization of a surface by means of Finite Elements is similar to the discretiza-

tion of a curve by means of univariate splines, the latter providing a basis for piecewise polynomial

curves.

Let Th be a triangulation of the domain, where h denotes the characteristic mesh size, defined

as the maximum length of the triangle edges in the triangulation. Figure 4, left panel, shows the

triangulation considered in the velocity field application. We consider the space V r
h of piecewise

polynomial functions of order r ≥ 1 over the triangulation. Denoting with Pr(τ ) the space of

polynomial functions of order r over the triangle τ , the space V r
h is defined as

V r
h =

{
v ∈ C0(Ω̄) : v|τ ∈ Pr(τ ) ∀τ ∈ Th

}
. (10)

The space V r
h is a finite dimensional subspace of H1(Ω), which is the space of functions in L2(Ω)

with first derivatives in L2(Ω). The latter space is characterized by less regularity than the space

V , which has both first and second derivatives in L2(Ω). It is thus necessary to appropriately

reformulate the estimation problems (4) and (9) in order to involve only first order derivatives, as

14



it will be described in Section 4.1 and 4.2.

Let Nh = dim(V r
h ) and denote by ψ1, . . . , ψNh

the Finite Element basis functions such that

V r
h = span{ψ1, . . . , ψNh

}. The basis ψ1, . . . , ψNh
are associated to the nodes ξ1, . . . , ξNh

, that

correspond to the vertices of the triangulation Th if the basis is piecewise linear, and are instead

a superset of the vertices when the degree of the polynomial basis is higher than one. Notice that

the nodes of the mesh and the mesh itself can be defined independently of the location points

p1, · · · ,pn. Figure 4, right panel, shows for example a linear Finite Element basis function on a

regular triangulation. The basis functions are local basis, with compact support, that can be seen

as multidimensional extensions of univariate splines. Moreover, the basis functions ψ1, . . . , ψNh

are Lagrangian, meaning that ψk(ξl) = δkl, where δij = 1 if i = j and δij = 0 otherwise. Hence a

surface f ∈ V r
h is uniquely determined by its values at the nodes:

f(x, y) =

Nh∑
k=1

f(ξk)ψk(x, y) = ψ(x, y)
T f (11)

where

f = (f(ξ1), . . . , f(ξNh
))T and ψ = (ψ1, . . . , ψNh

)T .

In the following we consider only homogeneous Dirichlet b.c., for which the value of the

function at the boundary is fixed to 0. In this case we consider the Finite Element space V r
h,0 ={

v ∈ C0(Ω̄) : v|∂Ω = 0 and v|τ ∈ Pr(τ ) ∀τ ∈ Th}, of dimension Nh,0, which only necessitates

of the basis functions associated to the internal nodes of the triangulation, whilst the basis functions

associated to the boundary nodes can be discarded. In Section 2 of the Supplementary Material

available online we extend the results presented in this section to the case of more general boundary

conditions.

4.1 Pointwise estimator
The Finite Element surface estimator f̂h is obtained recasting the estimation problem in the

finite dimensional space V r
h,0, thus obtaining a discretized version of the coupled system of PDEs

(4). As previously highlighted, the estimation problem (4) is defined in V , which is a space with

both first and second order derivatives in L2(Ω), whilst the Finite Element space V r
h,0 provides

a finite dimensional subspace of H1(Ω). For this reason we need to reformulate the estimation

problem in a form that can be properly discretized using the Finite Element space. This appropriate

reformulation of the problem, called variational formulation, involves only first order derivatives

and is obtained integrating the differential equations against a test function and integrating by parts
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the second order terms.

By introducing the test function ψ ∈ V r
h,0 we can define the bilinear form a(·, ·), associated to

the operator L, as

a(f̂h, ψh) =

∫
Ω

(
K∇f̂h · ∇ψh + b · ∇f̂hψh + cf̂hψh

)
. (12)

The discrete surface estimators f̂h, ĝh ∈ V r
h,0 are thus obtained solving


a(f̂h, ψh)−

∫
Ω
ĝhψh =

∫
Ω
uψh

λa(φh, ĝh) +
n∑

i=1

f̂h(pi)φh(pi) =
n∑

i=1

ziφh(pi)
(13)

for all ψh, φh ∈ V r
h,0. Exploiting now the Finite Element representation (11) for the discrete

estimators f̂h, ĝh ∈ V r
h,0, we are allowed to write the estimation problem as a linear system. Define

ψx =
(
∂ψ1/∂x, . . . , ∂ψNh,0

/∂x
)T and ψy = (∂ψ1/∂y, . . . , ∂ψNh,0

/∂y)T and the matrices

R(c) =

∫
Ω

cψψT , Rx(b) =

∫
Ω

b1ψψ
T
x , Ry(b) =

∫
Ω

b2ψψ
T
y ,

Rxx(K) =

∫
Ω

K11ψxψ
T
x , Ryy(K) =

∫
Ω

K22ψyψ
T
y , Rxy(K) =

∫
Ω

K12(ψxψ
T
y +ψyψ

T
x ).

Using this notation, the Finite Element matrix associated to the bilinear form a(·, ·) in (12) is given

by

A(K,b, c) = Rxx(K) +Rxy(K) +Ryy(K) +Rx(b) +Ry(b) +R(c). (14)

Moreover, define the vectors z = (z1, . . . , zn)
T , u =

∫
Ω
uψ and the matrices

R = R(1) =

∫
Ω

ψψT

and

Ψ =


ψT (p1)

...

ψT (pn)

 (15)

where Ψ is the matrix of basis evaluations at the n data locations p1, · · · ,pn.

The Finite Element solution f̂h of the discrete counterpart (13) of the estimation Problem 1 is
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thus given by f̂h = ψT f̂ where f̂ is the solution of the linear system[
ΨTΨ λAT

A −R

][
f̂

ĝ

]
=

[
ΨTz

u

]
.

4.1.1 Properties of the estimator
The estimator f̂h is a linear function of the observed data values. The fitted values ẑ = Ψf̂ can

be represented as

ẑ = Sz+ r

where the smoothing matrix S ∈ Rn×n and the vector r ∈ Rn are obtained as

S = Ψ
(
ΨTΨ+ λP

)−1
ΨT , r = Ψ

(
ΨTΨ+ λP

)−1
λPA−1u,

with P denoting the penalty matrix

P = P(K,b, c) = AT (R)−1A. (16)

The smoothing matrix S has the typical form obtained in a penalized regression problem. In

particular, the positive definite penalty matrix P represents the discretization of the penalty term in

(2). Notice that, thanks to the variational formulation of the estimation problem, this penalty matrix

does not involve the computation of second order derivatives. Section 3 of the Supplementary

Material available online shows that, in the Finite Element space used to discretize the problem, P

is in fact equivalent to the penalty matrix P̃ that would be obtained as direct discretization of the

penalty term in (2), and involving the computation of second order derivatives. Finally, the vector

r is equal to zero when the penalized PDE is homogeneous (u = 0); notice that when no specific

information on the forcing term is available, it is indeed preferable to consider homogeneous PDEs.

Thanks to the linearity of the estimator ẑ in the observations, we can easily derive the properties

of the estimator and obtain classical inferential tools as pointwise confidence bands and prediction

intervals (see also Sangalli et al. (2013)). Let z0 = (f0(p1), . . . , f0(pn))
T be the column vector of

evaluations of the true function f0 at the n data locations. Recalling that in our model definition

E[z] = z0 and Cov(z) = σ2I, we can compute the expected value and the variance of the estimator

ẑ:

E[ẑ] = Sf0 + b and Cov(ẑ) = σ2SST .
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Since we are dealing with linear estimators, we can use tr(S) as a measure of the equivalent

degrees of freedom for linear estimators (see, e.g., Buja et al. (1989) and Hastie and Tibshirani

(1990)). Hence we can estimate σ2 as

σ̂2 =
1

n− tr(S)
(ẑ− z)T (ẑ− z) .

The smoothing parameter λ may be selected via Generalized Cross-Validation minimizing the

index

GCV (λ) =
1

n (1− tr(S)/n)2
(ẑ− z)T (ẑ− z) .

4.2 Areal estimator
Analogously to the case of pointwise observations, also with areal observations we can intro-

duce an equivalent variational formulation of the estimation problem. Specifically, the variational

problem associated to (9) can be discretized as{
a(f̂h, ψh)−

∫
Ω
ĝhψh =

∫
Ω
uψh

λa(φh, ĝh) +
∑N

i=1
1

|Di|

∫
Di
f̂h

∫
Di
φh =

∑N
i=1 z̄i

∫
Di
φh

for all ψh, φh ∈ V r
h,0, where f̂h, ĝh ∈ V r

h,0 and a(·, ·) is the bilinear form defined in (12).

Let z̄ = (z̄1, . . . , z̄N)
T be the vector of mean values on subdomains D1, . . . , DN , and

Ψ̄ =


1

|D1|

∫
D1
ψT

...
1

|DN |

∫
DN
ψT


be the matrix of spatial means of the basis functions on the subdomains; moreover, introduce the

weight matrix W = diag(|D1| , . . . , |DN |) (recall that σ̄2
i ∝ 1/ |Di|).

The Finite Element solution f̂h of the discrete counterpart of the estimation Problem 2 is thus

given by f̂h = ψT f̂ where f̂ is the solution of the linear system[
Ψ̄TWΨ̄ λAT

A −R

][
f̂

ĝ

]
=

[
Ψ̄TWz̄

u

]
.

Notice that even though the method provides a pointwise surface estimator f̂h, in the areal

data framework we are in fact interested in the estimator of the spatial mean of the surface on a
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subdomain D:
ˆ̄f (D) =

1

|D|

∫
D

f̂

The Finite Element counterpart of this estimator is defined as

ˆ̄fh (D) =
1

|D|

∫
D

f̂h = ψ̄T
D f̂

where ψ̄D = (1/ |D|
∫
D
ψ1, . . . , 1/ |D|

∫
D
ψNh,0

)T .

4.2.1 Properties of the estimator

The discrete surface estimator f̂h and the estimator of the spatial average on the subdomains ˆ̄fh

are linear in the observed data values z̄. The fitted values of the spatial average on the subdmains

D1, . . . , DN are defined as ˆ̄z = Ψ̄f̂ = ( ˆ̄fh (D1) , . . . ,
ˆ̄fh (DN))

T . They can be represented as

ˆ̄z = S̄z̄+ r̄

where S̄ ∈ RN×N and r̄ ∈ RN are defined as

S̄ = Ψ̄
(
Ψ̄TWΨ̄+ λP

)−1
Ψ̄TW, b = Ψ̄

(
Ψ̄TWΨ̄+ λP

)−1
λPA−1u.

From the definition of model (7) and the linearity of the estimator we can derive the mean of the

estimator

E
[
ˆ̄z
]
= S̄z̄0 + b̄, (17)

where [z̄0]i = 1/ |Di|
∫
Di
f0, and its covariance

Cov(ˆ̄z) = S̄ diag(σ̄2
1, . . . , σ̄

2
N) S̄

T . (18)

It should be noticed that in the areal data framework the expected value (17) and the variance (18)

refer to the estimator of the spatial mean on a subdomain. In fact, even though we can obtain a

pointwise estimator for the surface f̂h, we cannot provide an accurate uncertainty quantification

for this estimate, because model (7) provides information only on the areal errors ηi. In particular,

in the considered areal framework, the variance

Cov(f̂) = ΨΨ̄−1S̄ diag(σ̄2
1, . . . , σ̄

2
N) S̄

T Ψ̄−TΨT

would underestimate the real variance of f̂ .
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5 General boundary conditions
All the results presented in Sections 2, 3 and 4 can be extended to the case of general homoge-

neous and non-homogeneous boundary conditions involving the value of the surface or of its first

derivatives at the boundary ∂Ω, allowing for a complex modeling of the phenomenon behavior at

the boundary of the domain. The three classic boundary conditions for second order PDEs are

Dirichlet, Neumann and Robin conditions. The Dirichlet condition controls the value of the func-

tion at the boundary, i.e., f |∂Ω = γD, the Neumann condition concerns the value of the normal

derivative of the function at the boundary, i.e., K∇f · ν|∂Ω = γN , where ν is the outward unit

normal vector to ∂Ω, while the Robin condition involves the value of a linear combination of first

derivative and the value of the function at the boundary, i.e., K∇f · ν + χf |∂Ω = γR. We can also

impose different boundary conditions on different boundary portions forming a partition of ∂Ω.

All the admissible boundary conditions can be summarized as
f = γD on ΓD

K∇f · ν = γN on ΓN

K∇f · ν + χf = γR on ΓR

(19)

where γD, γN and γR have to satisfy some regularity conditions in order to obtain a well defined

functional J(f) (see, e.g., Evans (1998)).

Under (19), the solution of the estimation problem and of its discrete counterpart also involve

boundary terms. Section 2 of the Supplementary Material available online gives all the details for

this general case.

6 Simulation studies
In this section we study the performances of SR-PDE, comparing it to standard SSR and to

SOAP in simple simulation studies. We focus on simulation studies that mimic our application

setting. The domain Ω is quasi circular; the true surface f0, represented in Figure 5, is obtained

as a deformation of a parabolic profile using landmark registration and is equal to zero at the

boundary of the domain. Likewise for our application, we assume to have a priori information

about the shape of the field, that is known to have a quasi parabolic profile, with almost circular

isolines, and to be zero at the boundary.

Since SOAP is not currently devised to deal with areal data, we here consider pointwise obser-

vations, with location points sampled on the whole or only on subregions of the domain (Section 4
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Figure 5: Left: true surface f0, with almost circular isolines and zero value at the boundary of
the domain, used for the simulation studies; the image displays the isolines (0, 0.1, . . . , 0.9, 1).
Center: diffusion tensor field K used for SR-PDE. Right: triangulation of the domain used for
SSR and SR-PDE.

of the Supplementary Material available online presents simulation studies comparing SR-PDE to

standard SSR in the areal data framework). Specifically, we here consider three cases:

A. n=100 observation points p1, . . . ,pn sampled on the entire domain;

B. n=100 observation points sampled only on the first and third quadrant;

C. n=100 observation points sampled in a cross-shape pattern.

The experiment is replicated 50 times. For each study case, A, B, and C, and each replicate: we

sample the location points, p1, . . . ,pn; we sample independent errors, ϵ1, . . . , ϵn, from a Gaussian

distribution with mean 0 and standard deviation σ = 0.1; we thus obtain observations z1, . . . , zn
from model (1) with the true function f0 displayed in Figure 5.

The surface f̂ is estimated using three methods:

1. SR-PDE (anisotropic and non-stationary smoothing);

2. standard SSR (isotropic and stationary smoothing);

3. SOAP (isotropic and stationary smoothing).

For all the three methods, we impose homogeneous Dirichlet b.c., f |∂Ω = 0; for each simulation

study, each replicate and each method, the value of the smoothing parameter λ is chosen via GCV.

The triangulation used for the SR-PDE and standard SSR estimation is a uniform mesh on the

domain, represented in Figure 5 Right, with approximately 100 vertices. Both for SR-PDE and

SSR we use a linear Finite Element space for the discretization of the surface estimator.

Using SR-PDE it is possible to incorporate the prior knowledge on the shape of the surface,

that should have almost circular isolines. We can achieve this by penalizing a PDE that smooths

the surface along concentric circles; specifically we consider the anisotropic and non-stationary
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Figure 6: Top left: location points sampled in the first replicate for case A. Top right, bottom left,
bottom right: surface estimates obtained using respectively SR-PDE, SSR and SOAP; the images
display the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates obtained in the 50 simulation
replicates; the isolines are colored using the same color scale used for the isolines of the true
function f0 in Figure 5.

diffusion tensor illustrated in the central panel of Figure 5 and given by

K(x, y) =

[
y2 + κ1x

2 (κ1 − 1)xy

(κ1 − 1)xy x2 + κ1y
2

]
+ κ2

(
R2 − x2 − y2

)
I2, (20)

where R denotes the largest radius in this almost circular domain (in the simulations, R = 1). The

first hyperparameter in (20), κ1, represents the ratio between the diffusion in the radial and in the

circular direction, and we set κ1 = 0.01. The anisotropic and non-stationary part of the diffusion

field, which corresponds to the first term of the right-hand side of (20), is stronger near the bound-

ary and completely vanishes in the center of the carotid; instead the isotropic and stationary part,

which corresponds to the second term of the right-hand side of (20), vanishes near the boundary.

The relative strength of the stationary isotropic and non-stationary anisotropic part is controlled
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Figure 7: Same as Figure 6, for case B.

via the second hyperparameter κ2, and we set κ2 = 0.1. The transport field, the reaction term and

the forcing term are set equal to zero, i.e., b = 0, c = 0 and u = 0.

Standard SSR instead is not able to take advantage of the specific prior knowledge of the shape

of the surface, and enforces an isotropic and stationary smoothing, corresponding to SR-PDE with

K = I, b = 0, c = 0 and u = 0. Also SOAP produces an isotropic and stationary smoothing;

this technique is implemented using the function gam, in the R package mgcv 1.7-22, see Wood

(2011), using 49 interior knots on a lattice.

Figures 6-8 show the results obtained using the different methods in the three considered sce-

narios, cases A, B and C. The upper left panel of the figures shows the location points sampled in

the first replicate in each of the three different scenarios. The top right, bottom left, bottom right

panels of these figures display the surface estimates obtained using respectively SR-PDE, SSR

and SOAP. In particular, the images display the isolines (0, 0.1, . . . , 0.9, 1) of the surface estimates

obtained in the 50 simulation replicates; the isolines are colored using the same color scale used

for the isolines of the true function f0 in Figure 5. These images highlight some aspects of the
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Figure 8: Same as Figure 6, for case C.

bias and variance of the surface estimators. The shape of the estimated surfaces emphasize the

main bias aspects of the estimators, while the dispersion or concentration of the isolines highlights

respectively the larger or smaller variability of the estimator.

Comparing the results obtained with the three methods we can notice that the inclusion of the

prior knowledge improves the estimate, especially when data are distributed only on subregions of

the domain. We can in fact see that in the three case studies the surfaces estimated with SR-PDE

smoothing have circular isolines similar to those of the true surface f0. Instead, when the prior

knowledge is not included in the model, i.e., for standard SSR and SOAP, the surface estimates

tend to depend on the design of the experiments. We notice in fact that the isolines of SSR and

SOAP estimates are similar to ellipses in case B and to rhomboids in case C, instead of circles.

This is due to the fact that both methods tend to fit planes in those areas where no observations are

available. This phenomenon is more apparent with SSR than with SOAP because SOAP estimates

have an higher variability.

Figure 9 shows the comparison of the three methods in terms of Root Mean Square Error
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Figure 9: Boxplot of RMSE (evaluated on a fine lattice of step 0.01 over the domain Ω) for
SR-PDE, SSR and SOAP estimators, in case studies A, B and C.

(RMSE) of the corresponding estimators, with the RMSE evaluated on a fine lattice of step 0.01

over the domain Ω. The boxplots highlight that incorporation of the prior knowledge on the shape

of the surface leads to a large improvement in the estimation. SR-PDE smoothing provides in

fact significantly better estimates of f0 than the other two methods. The boxplots also show that

SR-PDE estimates display lower variability than SSR and SOAP estimates. This phenomenon is

also visible from the isolines of the estimated surfaces with SR-PDE, SSR and SOAP represented

Figures 6-8.

The simulation studies reported in Section 4 of the Supplementary Material available online

show that incorporating the prior knowledge on the phenomenon leads to significantly improved

estimates also in the areal data framework.

7 Application to the blood-flow velocity field estimation
Carotid ECD is usually the first imaging procedure used to diagnose carotid artery diseases,

such as ischemic stroke, caused by the presence of an atherosclerotic plaque. ECD data in our

study have been collected using a Diagnostic Ultrasound System Philips iU22 (Philips Ultrasound,

Bothell, U.S.A.) with a L12-5 probe. The septum that divides the carotid bifurcation is localized

and marked as a reference point. With the help of an electronic rule, we localize the other points of

acquisition of the blood velocity; specifically, in our protocol the blood flow velocity is measured

in standard locations points, according to the cross-shaped design represented in Figure 1, right

panel, on the carotid cross-section located 2 cm before the reference point indicated above.

In order to estimate the systolic velocity field on this cross-section of the carotid we minimize

the functional J̄(f) defined in (8). As mentioned in Section 1 we know that a physiological velocity

profile has smooth and almost circular isolines. For this reason we choose to penalize a PDE that
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includes the non-stationary anisotropic diffusion tensor shown in the left panel of Figure 3 and

described in equation (20), that smooths the observations in the tangential direction of concentric

circles. The largest section radius is R = 2.8; we set κ1 = 0.1, in order to impose a smoothing

effect that is one order of magnitude stronger in the tangential direction of circles than in the

radial direction, and κ2 = 0.2, to impose an amount of isotropic smoothing in the center of the

vessel that is comparable to the anisotropic smoothing in the periphery of the vessel. Moreover,

we also know that, due to viscosity of the blood, a physiological velocity field is rather flat on

the central part of the artery lumen. For this reason, we also include in the PDE model the non-

stationary transport field shown in the right panel of Figure 3, which smooths the observations in

the radial direction, from the center of the cross-section to the boundary: b(x, y) = (βx, βy)T ,

where the hyperparameter β represents the intensity of the transport field. This transport term

in fact penalizes high first derivatives in the radial direction, providing velocity profiles that tend

to flatten in the central part of the artery lumen. Here we set β = 0.5 to impose a smoothing

effect that is comparable to the anisotropic smoothing induced by the diffusion term. The reaction

parameter and the forcing term are not needed in this application, hence we set c = 0 and u = 0.

Finally, we know that blood flow velocity is zero at the arterial wall, due to friction between the

blood particles and the vessel wall (the above mentioned no-slip conditions); hence we impose

homogeneous Dirichlet b.c.: f |∂Ω = 0. The problem is then discretized by means of linear Finite

Elements defined on the mesh represented in Figure 4, left panel.

Figure 10 displays the velocity field estimated using SR-PDE smoothing. The maximum es-

timated velocity is 31.75 cm/s with an estimated standard deviation ˆ̄σ = 1.92 cm/s. A visual

comparison with the estimate obtained for the same data by standard SSR, shown in Figure 2,

immediately highlights the advantages of the proposed technique. Whilst the standard SSR esti-

mate is strongly influenced by the cross-shaped pattern of the observations and displays strongly

rhomboidal isolines, forcing the surface estimate towards a plane in regions where no observations

are available, the SR-PDE efficiently uses the a priori information on the phenomenon under study

and returns a realistic estimate of the blood flow, which is not affected by the cross-shaped pattern

of the observations and displays physiological and smooth isolines.

Notice that the SR-PDE estimate in Figure 10 captures an asymmetry in the data, resulting in

an eccentric estimate of the blood flow: the velocity peak is in fact not in the center of the cross-

section but in the lower part where higher velocities are measured. This feature of the blood flow is

indeed justified by the curvature of the carotid artery and by the non-stationarity of the blood flow.

SR-PDE estimates in fact accurately highlight important features of the blood flow, such as eccen-
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Figure 10: Estimate of the blood-flow velocity field in the carotid section using SR-PDE.

tricity, asymmetry and reversion of the fluxes, that are of interest to the medical doctors, in order

to understand how the local hemodynamics influences atherosclerosis pathogenesis. As mentioned

in the Introduction, MACAREN@MOX project aims at exploring this relationship, investigating

how different hemodynamical patterns affect the plaque formation process. For this reason, ob-

taining accurate physiological estimates of blood flow velocity fields is a first crucial goal of the

project. Indeed, the SR-PDE estimates will then be used in population studies that compare the

blood flow velocity field in patients vs healthy subjects, and that compare the velocity field in pa-

tients before and after the removal of the carotid plaque via thromboendarterectomy. Notice that

such population studies involve the comparisons of estimates referred to different domains, since

the cross-sections of the carotids have patient-specific shapes; to face this issue we are currently

developing an appropriate registration method (see Section 8) and these analyses will be the object

of a following dedicated work. The estimated velocity fields will also be used as inflow conditions

for the hemodynamic simulations performed using patient-specific carotid morphologies. The pre-

scription of suitable inflow conditions in computational fluid-dynamics is in fact a major issue;

see, e.g., Veneziani and Vergara (2005). Moreover, the computation of the variance of the sur-

face estimator will also be used to investigate the sensitivity of these simulations to the specified

inflow conditions and will provide some understanding on how their misspecification affects the

results. These numerical simulations will in turn offer enhanced data that give a richer information

on hemodynamical regimes in the carotid bifurcation, further allowing the study of its impact on

atherosclerosis. Computational fluid-dynamic simulations are also of great interest because they

allow to synthetically verify the impact of different surgical interventions, evaluating which one is
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more prone to the reformation of the plaque or to other complications. In the future, this could be-

come an important tool for comparing beforehand the effects of different interventions for a given

patient, considering the geometry of the patient carotid and the properties of the atherosclerotic

plaque, thus giving important suggestions to clinicians on the surgical operation to choose in the

specific patient case.

8 Conclusion and future work
In this work we have introduced an innovative method for surface and spatial field estimation,

when prior knowledge is available, concerning the physics of the problem. In particular, this prior

knowledge, conveniently described via a PDE, is used to model the space variation of the phe-

nomenon. Although demonstrated on the specific application that motivated its development, the

method has indeed a very broad applicability, since PDEs are commonly used to model phenomena

behavior in many fields of sciences and engineering.

One of the most interesting developments within this line of research consists now in the data

driven estimation of the hyperparameters in the penalized PDE. In the current study, these hyperpa-

rameters have in fact been considered fixed. Notice that, while a currently crucial topic in statistics

concerns the development of methods for parameter estimations in Ordinary Differential Equation,

this would instead consist in approaching the remarkably more complex problem of data driven es-

timation of the parameters in PDEs. Although this research field is subject of specific interest by

the inverse problem community (see, e.g., Stuart (2010)), we believe that statisticians have not yet

devoted much attention to this problem. Within the considered framework, a possible road to tackle

this problem is offered for instance by the parameter cascading methodology proposed in Ramsay

et al. (2007). A first promising attempt to apply this methodology to the parameter estimation in

PDEs is provided in Xun et al. (2013).

As derived in Section 4, the proposed estimators are linear in the observed data values and

have a typical penalized regression form, so that important distributional properties can be readily

derived. We are currently also studying the (infill) asymptotic properties of these estimators, when

the number of observations n goes to infinity and the characteristic mesh size h goes to zero. The

numerical convergence of the estimator when h goes to zero is detailed in Azzimonti et al. (2014).

The proposed method can also be extended to include the time dimension, in order to model

surfaces evolving in time. Such extension would allow to study how the blood-flow velocity field

varies during the time of the heart beat. Notice that it is necessary in this case to allow for changes

of the shape of the domain over time, to account for the deformation of the artery wall during the
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heart beat. This poses a problem of registration of different domains similar to the one faced in

population studies (see Section 7).

Finally, the method could also be extended to Riemannian manifold domains, by appropriately

setting the problem in the framework presented in Ettinger et al. (2012).
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