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Abstract. We describe a model for the analysis of data distributed over irregularly shaped
spatial domains with complex boundaries, strong concavities and interior holes. Adopting an
approach typical of functional data analysis, we propose a Spatial Spline Regression model
that is computationally efficient, allows for spatially distributed covariate information and can
impose various conditions over the boundaries of the domain. Accurate surface estimation is
achieved by the use of piecewise linear and quadratic finite elements.
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1. Introduction

We propose a semi-parametric model for the analysis of data distributed over spatial do-
mains, including those with complex domain boundaries, strong concavities and interior
holes. Figure 1, showing census tract locations over the Island of Montréal, Québec, Canada,
but excluding the airport and rail yards in the south and an industrial park with an oil
refinery tank farm in the north-east, illustrates the kind of problem that we consider. Pop-
ulation density, average per-capita income and other measures are available at each cen-
sus tract, and a binary variable indicating whether a tract is predominantly residential or
industrial/commercial is available as covariate for estimating the distributions of census
quantities. Here in particular we are interested in population density; the airport and in-
dustrial park are thus not part of the domain of interest since people cannot live in those
two areas. Census quantities can vary sharply across these uninhabited parts of the city; for
instance, in the south of the industrial park there is a densely populated area with medium-
low income, but north-east and west of it are wealthy neighborhoods, with low population
density to the north-east, and high population density to the west. Hence, whilst it seems
reasonable to assume that population density features a smooth spatial variation over the
inhabited parts of the island, there is no reason to assume smooth spatial variation across
interior boundaries. The figure also shows the island coasts as boundaries of the domain
of interest; those parts of the boundary that are highlighted in red correspond respectively
to the harbor, in the east shore, and to two public parks, in the south-west and north east
shore; and no people live by the river banks in these boundary intervals. We thus want to
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Figure 1. Island of Montréal census data. Dots indi-

cates the centroids of census enumeration areas, for which

population density and other census information are avail-

able. The two parts of the island where there are no data,

encircled by yellow lines, are areas where people cannot

live (the airport and rail yards in the south and an industrial

park with an oil refinery tank farm in the north-east). The

island boundary is also outlined in yellow and red, with red

sections indicating the harbor and two public parks.

study population density, taking into account covariate information, being careful not to ar-
tificially link data across areas where people cannot live, and also efficiently including prior
information concerning those stretches of coast where the population density should drop
to zero. Well-known methods for spatial data analysis, such as kriging, kernel smoothing,
wavelet-based smoothing, tensor product splines and thin-plate splines, are not appropriate
for these data, since they do not take into account the shape of the domain and also smooth
across concave boundary regions; moreover, these methods do not allow the specification of
fixed values for the surface estimate at the domain boundary, or along parts of it.

We adopt a functional data analysis approach in proposing a Spatial Spline Regression
(SSR) model that overcomes these limitations, being able to efficiently deal with data dis-
tributed over irregularly shaped regions. The model incorporates the penalized bivariate
spline smoother introduced by Ramsay (2002); in this smoother, the roughness penalty
consists of a Laplace operator that is integrated only over the region of interest thanks to
a finite element formulation, that defines a system of local basis functions for continuous
piecewise-polynomial surfaces. We improve the Ramsay (2002) smoother in many respects,
from both computational and modeling perspectives. The modeling generalizations include
the capacity to account for covariate measures and also to comply with different conditions
at the boundary of the domain; the surfaces describing the spatial variation may either
exhibit free value behavior at the exterior or interior boundaries of the domain, with a
specified gradient in the normal direction, or be constrained to desired fixed values. More-
over, these boundary conditions can vary over different intervals on the boundaries, and
linear combinations of them may be applied as well. SSR estimators turn out to be linear
in the observed data values, so that classical inferential tools may be readily derived. The
finite element formulation is also computationally highly efficient.

SSR is compared to kriging, thin-plate splines and soap film smoothing, the latter intro-
duced by Wood et al. (2008) and used for instance in Marra et al. (2012) in a tensor product
smoother that also includes the time dimension. Our simulation studies show that SSR and
soap film smoothing provide a large advantage over the other more classical techniques
when dealing with data scattered over irregularly shaped domains. SSR is also similar to
the spatial data analysis models introduced by Guillas and Lai (2010) which also penalize
roughness with a partial differential operator. Finally, SSR models have also strong con-
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nections with the work of Lindgren et al. (2011), that links Gaussian fields and Gaussian
Markov random fields via a stochastic partial differential equation that induces a Matérn
covariance and is solved over irregular grids of points resorting to finite elements.

1.1. Data and model
Let {pi = (xi, yi); i = 1 . . . , n} be a set of n points on a bounded regular domain Ω ⊂ R2.
Let zi be the value of a real-valued variable observed at point pi, and let wi = (wi1, . . . , wiq)

t

be a q-vector of covariates associated to observation zi.
The semi-parametric model for these data is

zi = wt
iβ + f(pi) + ϵi, i = 1, . . . , n (1)

where ϵi, i = 1, . . . , n, are residuals or errors distributed independently of each other, with
zero mean and variance σ2. Vector β ∈ Rq contains regression coefficients and function f
is real-valued and twice differentiable. We estimate the regression coefficient vector β and
the surface or spatial field f by minimizing the penalized sum-of-square-error functional

Jλ(β, f) =
n∑

i=1

(
zi − wt

iβ − f(pi)
)2

+ λ

∫
Ω

(∆f)2. (2)

The roughness penalty is the integral over Ω of the square of the Laplacian of f ,

∆f =
∂2f

∂x2
+
∂2f

∂y2
,

a measure of local curvature of f that is invariant with respect to Euclidean transformations
of spatial coordinates, and therefore ensures that the concept of smoothness does not depend
on the orientation of the coordinate system. To lighten the notation, surface integrals will
be written without the integration variable p, i.e., for any integrable function g defined over
D ⊆ R2,

∫
D
g :=

∫
D
g(p)dp.

The estimation problem (2) is tackled by means of finite element analysis, a methodology
mainly developed and used in engineering applications, to solve partial differential equa-
tions. The strategy of finite element analysis is very similar in spirit to that of univariate
splines, and consists of partitioning the problem domain into small disjoint sub-domains and
defining polynomial functions on each of these sub-domains in such a way that the union of
these pieces closely approximates the solution. Convenient domain partitions are given for
instance by triangular meshes; Figure 11 shows for example a triangulation of the domain
of interest for the Island of Montréal data. The simplified problem is made computationally
tractable by the choice of the basis functions for the space of piecewise polynomials on the
domain partition. Each piece of the partition, equipped with the basis functions defined
over it, is named a finite element. Introductions to finite element analysis are offered, e.g.,
by Gockenbach (2006), Quarteroni (2009) and Braess (2007).

Many methods for surface or spatial field estimation define the estimate as the mini-
mizer of a penalized sum-of-square-error functional, with the roughness penalty involving
a partial differential operator. For instance, the regularizing term in (2) can be rewritten
as

∫
Ω
{(fxx)2 + 2fxxfyy + (fyy)

2} to facilitate comparison with thin-plate spline penalty∫
R2{(fxx)2 + 2(fxy)

2 + (fyy)
2}, the latter being integrated over the entire plane R2. The

soap film smoothing technique introduced by Wood et al. (2008) uses the same penalty
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as in (2) and in Ramsay (2002), but follows a different analytic and numerical approach
to find the minimizer. The spatial models proposed by Guillas and Lai (2010) consider
a regularizing term involving linear combinations of all partial derivatives up to a chosen
order, and employ bivariate splines over triangulations (see, e.g., Lai and Schumaker 2007),
that, likewise finite elements, provide a basis for piecewise-polynomial surfaces. Within the
framework proposed in the current paper, the regularizing term in (2) can be generalized
to deal with more complicated partial differential operators; the interesting implications of
this line of research will be discussed in Section 7.

The rest of the paper is organized as follows. Section 2 presents the estimation problem
in functional or variational form as a preliminary to the development of the finite element
approximation to the functional solution. Section 3 describes the finite element function
spaces used for the approximation, and Section 4 derives the finite element solution to the
estimation problem and the properties of the associated estimators. Section 5 focusses on
how to deal with various boundary conditions. Section 6 illustrates the performances of
the proposed method via simulation studies and an application to the Island of Montréal
census data. Finally, Section 7 draws some conclusive considerations and discuss extensions
of the model considered and directions of future research. Detailed proofs are deferred to
the Appendix.

2. The estimation problem in variational terms

Let Hm(Ω) be the set of functions in L2(Ω) having all derivatives up to order m in L2(Ω).
Let Hm

n0(Ω) ⊂ Hm(Ω) consists of those functions whose normal derivatives are 0 on the
boundary of Ω. Denote by W the n×q matrix whose ith row is given by wt

i, the vector of q
covariates associated to observation zi at pi, and assume that W has full rank. Let P be the
orthogonal projection matrix that projects orthogonally on the subspace of Rn generated
by the columns of W, i.e., P := W(WtW)−1Wt, and let Q = I−P, where I is the identity
matrix. Furthermore, set z := (z1, . . . , zn)

t and, for a given function f on Ω denote by fn
the vector of evaluations of f at the n data locations, i.e., fn := (f(p1), . . . , f(pn))

t.
The penalized sum-of-square-error functional (2) is well defined for β ∈ Rq and f ∈

H2(Ω). Furthermore, as is shown in Appendix A.1, imposing a boundary condition on
f , such as f ∈ H2

n0(Ω), ensures that the estimation problem has a unique solution. In
particular, f ∈ H2

n0(Ω) corresponds to the assumption of zero flow across boundaries; see
also the discussion on boundary conditions in Section 5. For this reason, we shall start by
considering the estimation problem over β ∈ Rq and f ∈ H2

n0(Ω). These assumptions on
functional spaces, as well as other assumptions on functional spaces that we will make in
the following, can be relaxed; however, for simplicity of exposition, we do not pursue this
here. Proposition 1 characterizes the solution of the estimation problem.

Proposition 1. The estimators β̂ and f̂ that jointly minimize (1), over β ∈ Rq and
f ∈ H2

n0(Ω), exist unique

◃ β̂ = (WtW)−1Wt(z − f̂n)

◃ f̂ satisfies

ut
n Q f̂n + λ

∫
Ω

(∆u)(∆f̂) = ut
n Qz (3)

for every u ∈ H2
n0(Ω).
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Proof. See Appendix A.1.

The following sections show how an approximate solution to the estimation problem
can be obtained using the finite element method. In particular, (3) is reformulated as a
problem in H1(Ω) and this problem is thus discretized using a finite element space included
in H1(Ω). Section 3 briefly reviews the construction of this finite element space.

3. Lagrange triangular finite elements

We consider a regular triangulation T of Ω, where adjacent triangles share either a vertex
or a complete edge. Domain Ω is hence approximated by domain ΩT consisting of the
union of all triangles, so that the boundary ∂Ω of Ω is approximated by a polygon (or more
polygons, in the case for instance of domains with interior holes). It is assumed, therefore,
that the number and density of triangles in T is sufficient to capture sharp features in
∂Ω as well providing a basis for adequately describing the data. We will assume in this
paper, for purposes of simplicity only, that the triangulation points in T are are such that
the first n coincide with the data location points pi; i.e., letting vj , j = 1, . . . , J indicate
vertices of triangles, we have that vi = pi, i = 1, . . . , n, where n ≤ J . In particular, for the
simulations and application in Section 6 we use Delaunay triangulations of the set of data
location points, constrained within the domain of interest. Delaunay triangulations (see,
e.g., Hjelle and Dæhlen 2006) of a set of points V are such that no point in V is inside the
circumcircle of any triangle; they maximize the minimum angle of all the triangle angles,
avoiding stretched triangles. Starting from set V of data locations has the advantage of
providing triangulations that are naturally finer where there are more data points, and
coarser where data points are fewer; the triangulation can of course be refined according
to criteria concerning maximal allowed triangle edge and minimal allowed triangle angle.
Our methodology can also be easily extended to allow the triangulation points and the data
location points to be separate. It must be emphasized that the triangular mesh generation
problem is far from trivial, is the subject of a large literature and constitutes a great deal
of the technical challenge in applications of finite element analysis. Triangulation software
is readily available in many free and commercial finite element packages.

The surface to be constructed over ΩT is assumed to be a polynomial in x and y over
any triangle, and is continuous across edges and vertices. In this paper we consider the
two cases where the polynomial is either linear or quadratic (the latter case being the one
considered in Ramsay 2002). The linear case defines the linear polynomial over each triangle
as linear combination of three basis functions, each having value one at a single vertex and
zero at the other two. The vertices used in this way are also called control points or nodes,
and are indicated by ξk, k = 1, . . . ,K. In the quadratic case, six nodes are required for each
triangle, each node being associated with the unique quadratic polynomial that has value
one at a single node and zero at the remaining five. In this quadratic case, we extend the
set of vertices to include midpoints of edges in defining the nodes ξk. To summarize, nodes
and vertices coincide for piecewise linear surfaces, but quadratic surfaces involve roughly
twice as many nodes as vertices.

Since adjacent triangles share an edge or a vertex, it is automatic that that a piecewise
linear or quadratic basis function ψk is associated with each node ξk that has value one
at the node and value zero at all neighboring nodes. Each such piecewise polynomial basis
function is called a Lagrange finite element. Figure 2 shows for the linear case one such
basis function; its shape depends on the number of triangles sharing the vertex ξk and on
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Figure 2. Nodal basis associated with node ξ =

(0, 1) over a uniform triangular mesh.

the lengths of the triangle edges. The set of K basis functions defined in this way define a
function subspace H1

T (Ω) ⊂ H1(ΩT ).
Set ψ := (ψ1, . . . , ψK)t; moreover, for a given function f on Ω, denote by f the K-vector

having as entries the evaluations of f at the K nodes, i.e., f := (f(ξ1), . . . , f(ξK))t. Being
ψk(ξl) = δkl, the finite element space has been constructed precisely so that any function
f in H1

T (Ω) is completely defined by its value at the K nodes:

f(x, y) =
K∑

k=1

ck ψk(x, y) =
K∑

k=1

f(ξk)ψk(x, y) = ftψ(x, y). (4)

This Lagrangian property of the basis is very convenient from a computational point of
view and will be exploited extensively in the following.

4. Finite element solution to the estimation problem

In Appendix A.2 we show, by introducing an auxiliary function g and using integration by
parts, that the problem of finding f̂ ∈ H2

n0(Ω) that satisfies (3) for every u ∈ H2
n0(Ω) may

be reformulated as follows: find (f̂ , g) ∈
(
H1

n0(Ω) ∩ C0(Ω)
)
×H1(Ω) that satisfies

ut
n Q f̂n − λ

∫
Ω

(∇u · ∇g) = ut
n Qz∫

Ω

v g +

∫
Ω

(∇v · ∇f̂) = 0

(5)

for all (u, v) ∈
(
H1

n0(Ω)∩C0(Ω)
)
×H1(Ω); moreover, such f̂ belongs to H2

n0(Ω). The finite
element method requires the solution of this weak formulation of the estimation problem
within a finite element space H1

T (Ω). Corollary 1 shows that, thanks to the choice for
domain partition and function basis of the finite element space, finding the solution to this
discrete counterpart of the estimation problem reduces to solving a linear system.

Let ψx := (∂ψ1/∂x, . . . , ∂ψk/∂x)
t and ψy := (∂ψ1/∂y, . . . , ∂ψk/∂y)

t, and define the
order K matrices

R0 :=

∫
ΩT

(ψψt) and R1 :=

∫
ΩT

(ψxψ
t
x +ψyψ

t
y).
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Moreover, let us also introduce the order K block matrix L, and the K × n block matrix
D, defined by

L :=

[
Q On×(K−n)

O(K−n)×n O(K−n)×(K−n)

]
and D :=

[
In

O(K−n)×n

]
where Om1×m2 is a m1 ×m2 matrix with all entries equal to zero. Finally, denote by 0 the
null vector.

Corollary 1. The estimators β̂ ∈ Rq and f̂ ∈ H1
T (Ω), that solve the discrete counter-

part of the estimation problem, exist unique

◃ β̂ = (WtW)−1Wt(z − f̂n)

◃ f̂ = f̂
t
ψ, with f̂ satisfying [

−L λR1

λR1 λR0

] [
f
g

]
=

[
−LDz

0

]
. (6)

Proof. See Appendix A.3.

As mentioned in the introduction, the boundary condition that the normal derivatives
of f are 0 on the boundary of Ω, i.e., f ∈ H2

n0(Ω), guarantees the uniqueness of the solution
to the estimation problem (2). Although the estimate f̂ ∈ H1

T (Ω) is an approximation of
f ∈ H2

n0(Ω), the estimate f̂ itself will not generally have normal derivatives equal to 0 on the
domain boundary, since this has not been enforced in the construction of the finite element
space. The boundary condition on normal derivatives is rather used as a so-called natural
boundary condition, being exploited when using integration by parts to obtain reformulation
(5) of the estimation problem (see Appendix A.2). See also Section 5.

Solving the linear system (6) is fast. In fact, although the system is typically large,
being of order 2K, it is highly sparse because the matrices R0 and R1 are highly sparse,
since the cross-products of nodal basis functions and of their partial derivatives are mostly
zero. As an example, for the Isle of Montréal census data, we used 626 nodes and only
about 1% of the entries of R0 and 0.2% of the entries of R1 were non-zero.

We compute the integrals of the cross-products of nodal basis functions and of their
partial derivatives in R0 and R1 exactly, instead of using quadrature approximations as in
Ramsay (2002).

4.1. Properties of the estimators
Denote by B the order 2K matrix in system (6), and set A := −B−1. Moreover, denote
by An the order n matrix corresponding to the first n rows and n columns of A, and by
AKn the K × n matrix corresponding to the first K rows and n columns of A. With a few
simplifications we can thus write

f̂n = An Qz and f̂ = AKn Qz = AKn A−1
n f̂n. (7)

This expression for f̂ highlights the fact that the finite element solution f̂ is determined by
f̂n, the solution f̂ at the n data points. Moreover, using the expression of f̂n in (7), we have

β̂ = (WtW)−1Wt
{
I − An Q

}
z .
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Consequently the estimators f̂, f̂n and β are linear functions of the data values; their prop-
erties are therefore straightforward to derive and classic inferential tools can be obtained.
Recalling that E[z] = Wβ + fn and Var(z) = σ2 I, and exploiting the properties of the
matrices involved (e.g., Q is symmetric and idempotent, An is symmetric, QW = On×n,
QW(WtW)−1 = (WtW)−1Wt Q = On×n), with a few simplifications we obtain the
means and variances of the estimators f̂n and β̂:

E[̂fn] = An Qfn

Var(̂fn) = σ2An QAn (8)

and

E[β̂] = β + (WtW)−1Wt
(
I − An Q

)
fn

Var(β̂) = σ2(WtW)−1 + σ2(WtW)−1Wt
{
An QAn

}
W(WtW)−1. (9)

Consider the vector ẑ of fitted values at the n data points

ẑ = Wβ̂ + f̂n =
(
P + QAn Q

)
z = Sz

where S denotes the smoothing matrix S := P + QAn Q. The spatial spline regression
estimator is thus a linear estimator, with the fitted values ẑ obtained from observations
z via application of the linear operator S, independent of z. A commonly used measure
of the equivalent degrees of freedom for linear estimators is given by tr(S) (see, e.g., Buja
et al. 1989, who first introduced this notion). The equivalent degrees of freedom of the SSR
estimator,

tr(S) = q + tr(An Q),

are given by the sum of the q degrees of freedom of the parametric part of the model (q
being the number of covariates considered) and the equivalent degrees of freedom tr(An Q)

corresponding to the non-parametric part of the model; recall in fact that f̂n =
(
An Q

)
z

as in (7). We can now estimate σ2 by

σ̂2 =
1

n− tr(S)
(
z − ẑ

)t(z − ẑ
)
.

This estimate, together with expressions (9) and (8), may be used to obtain approximate
confidence intervals for β and approximate confidence bands for f . Furthermore, the value
of the smoothing parameter λ may be selected by Generalized-Cross-Validation (see, e.g.,
Ramsay and Silverman 2005, and references therein):

GCV (λ) =
1

n
(
1− tr(S)/n

)2 (
z − ẑ

)t(z − ẑ
)
.

Finally, the value predicted for a new observation, at point pn+1 and with covariates wn+1,
is given by

ẑn+1 = wt
n+1β̂ + f̂(pn+1) = wt

n+1β̂ + f̂
t
ψ(pn+1),

whose mean and variance can be obtained from expressions above; correspondingly, approx-
imate prediction intervals may be also derived.
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5. Boundary conditions

It is often the case that one would like the smoothing surface f to have specific values at the
boundary of the domain, or in some part of the boundary domain. For instance, Azzimonti
et al. (2012) study the blood-flow velocity field in a section of a carotid artery, using data
provided by eco-color dopplers. In this applied problem it is a priori known that blood-flow
velocity should be zero at the arterial wall because of the friction between blood cells and
arterial wall.

Thus, suppose we know that f = f∂Ω on ∂Ω, where f∂Ω is sufficiently regular. We there-
fore want to estimate β and f by minimizing the penalized sum-of-square-error functional
(2) over β ∈ Rq and f ∈ H2(Ω), conditioned on f |∂Ω = f∂Ω. Denote by Hm

0 (Ω) the subset
of Hm(Ω) consisting of those functions vanishing on the boundary of Ω. Proposition 2
characterizes the solution of this estimation problem with fixed value boundary conditions.

Proposition 2. The estimators β̂ and f̂ that jointly minimize (1), over β ∈ Rq and
f ∈ H2(Ω) with f |∂Ω = f∂Ω, exist unique

◃ β̂ = (WtW)−1Wt(z − f̂n)

◃ f̂ = ŝ + f̄ , where f̄ is any fixed function in H2(Ω) such that f̄ |∂Ω = f∂Ω and with
known gradient ∇f̄ and Laplacian ∆f̄ , and ŝ ∈ H2

0 (Ω) satisfies

ut
n Q ŝn + λ

∫
Ω

(∆u)(∆ŝ) = ut
n Q (z − f̄tn)− λ

∫
Ω

(∆u)(∆f̄) (10)

for every u ∈ H2
0 (Ω).

Proof. See Appendix A.4.

Likewise in Section 4 we derive a reformulation of the estimation problem that will
constitute the base for the application of the finite element method. Denote by ∂ν the
normal derivative on the boundary of Ω, ∂νu := ν · ∇u, where ν is the outward normal to
∂Ω. Appendix A.5 shows that, introducing an auxiliary function g and using integration by
parts, the problem of finding ŝ that satisfies (10) for every u ∈ H2

0 (Ω) may be formulated
as follows: find (ŝ, g) ∈

(
H1

0 (Ω) ∩ C0(Ω)
)
×H1(Ω) that satisfies

ut
n Q ŝn − λ

∫
Ω

(∇u · ∇g) + λ

∫
∂Ω

(∂νu) g = ut
n Q (z − f̄n)∫

Ω

v g +

∫
Ω

(∇v · ∇ŝ)−
∫
∂Ω

v (∂ν ŝ) = −
∫
Ω

(∇v · ∇f̄) +
∫
∂Ω

v (∂ν f̄)

(11)

for all (u, v) ∈
(
H1

0 (Ω)∩C0(Ω)
)
×H1(Ω); moreover, such ŝ belongs to H2

0 (Ω), and therefore
f̂ = ŝ + f̄ ∈ H2(Ω) with f̂ |∂Ω = f∂Ω. Corollary 2 gives the finite element solution to this
problem.

Let m be the number of interior nodes. Denote by L̃ the order m matrix obtained from
L by removing the (K −m) rows and columns corresponding to boundary nodes, and by
R̃1 the m ×K matrix obtained from R1 by removing the (K −m) rows corresponding to
boundary nodes. Moreover, define the order K matrix Rν ,

Rν :=

∫
∂ΩT

(νxψx + νy ψy)ψ
t,
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and denote by R̃ν the m × K matrix obtained from Rν by removing the (K − m) rows
corresponding to boundary nodes. The matrix Rν is highly sparse, having non-zero entries
only for couples of nodal basis associated to boundary elements.

Corollary 2. The estimators β̂ ∈ Rq and f̂ ∈ H1
T (Ω) with f̂ = f∂Ω on all boundary

nodes, that solve the discrete counterpart of the estimation problem with fixed value boundary
conditions, exist unique

◃ β̂ = (WtW)−1Wt(z − f̂n)

◃ f̂ = ŝ+ f̄ , where f̄ is the finite element function that coincides with f∂Ω on the K−m
boundary nodes and equals 0 on the m interior nodes, and ŝ is the finite element
function that equals 0 on the K−m boundary nodes and takes values on the m
interior nodes given by the vector ˆ̃s ∈ Rm satisfying[

−L̃ λ(R̃1 − R̃ν)

λ(R̃1 − R̃ν)
t λR0

] [
s
g

]
=

[
−L̃ z

−λ(R1 − Rν)
t f̄

]
. (12)

Proof. See Appendix A.6.

We have considered the case where the values of the smoothing surface function are
fixed along the whole boundary. This is been done only for clarity of explanation; with
minor changes we can deal with mixed boundary conditions. For instance, we can specify
fixed values only over a part of the boundary, say ΓD, leaving the values of the solution free
on the other part, say ΓN , where we instead fix the value of normal derivatives (possibly
also different from 0), as done for instance in Section 2 (here, ΓD ∪ ΓN = ∂Ω). From a
computational point of view, this is a minor modification of what has been explained above.
In the simulations and application presented in the following section, we will look for esti-
mates that satisfy mixed boundary conditions. In the numerical analysis terminology, fixing
the values of the solution at the domain boundary is a Dirichlet boundary condition, fixing
instead the values of the normal derivatives, controlling the flow through boundaries, is a
Neumann boundary condition. Within our framework, besides the mixed boundary condi-
tions mentioned above (with different conditions on different part of the boundary), it is also
straightforward to consider Robin boundary conditions, consisting in linear combinations of
Dirichlet and Neumann conditions. As mentioned in Section 2, imposing a boundary condi-
tion on f ensures uniqueness of the solution. The soap film smoothing technique mentioned
in the Introduction can deal with Dirichlet conditions over part or the whole boundary.

6. Simulation studies and applications

6.1. Simulations on C-domain
We shall here compare the performances of filtered kriging (KRIG), thin-plate splines (TPS),
soap-film smoothing (SOAP) and SSR models, in a simulation study on a C-shaped domain
with the surface test function used by Wood et al. (2008), which is in turn a modification of
the one presented by Ramsay (2002). This function f , on its C-shaped domain, is shown in
the top left panel of Figure 3. With respect to Wood et al. (2008) we also include covariates
in the simulation study. In particular, forN = 50 replicates, we simulate data as follows. We
sample n = 200 locations, p1, . . . ,pn, uniformly on the C-shaped domain. Independently
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Figure 3. Top left: color map of true function (3D image shown in Figure 4). Top right: sampled data (size of the point marker

proportional to sampled data value), replicate 1. Bottom left: domain triangulation, replicate 1. Bottom center and right: scatter

plots of response variable vs covariates, replicate 1.

for each pi, we sample two independent covariates wi1 and wi2, from a N(µ1, σ
2
1) and a

N(µ2, σ
2
2) distribution, respectively. We thus obtain z1, . . . , zn from

zi = β1 wi1 + β2 wi2 + f(pi) + ϵi i = 1, . . . , n (13)

where ϵi, i = 1, . . . , n, are independent errors with N(0, σ2
ϵ ) distribution. The parameter

values used in the simulation are: β1 = −0.5, β2 = 0.2, σϵ = 0.5, µ1 = 3, σ1 = 1.5, µ2 = 7,
σ2 = 5. The top right panel of Figure 3 shows the data sampled in the first replicate, with
the size of the point marker proportional to the size of the sampled value. The bottom center
and right panels of the same figure display the corresponding scatter plots of the response
variable versus the two covariates. From these plots, for instance, it is not apparent that
the first covariate is significant for the explanation of the variability of the response.

KRIG and TPS estimates are obtained under standard implementation settings, using
the R package fields (see Furrer et al. 2010), with the Matérn covariance with smoothness
parameter ν = 1 for KRIG. SOAP is implemented using R package soap (see Wood 2010),
and uses 32 interior knots and a rank 39 (40-knot) cyclic penalized cubic regression spline
as the boundary curve. The bottom left panel of Figure 3 illustrates the triangulation used
for SSR computations for the first replicate. The values of the smoothing parameters for
the four methods are selected, for each replicate and method, by GCV.

Table 6 shows the Root Mean Square Errors (RMSE), over the 50 simulation replicates,
of the estimate of the parameters β1, β2 and σϵ provided by KRIG, TPS, SOAP and linear
and quadratic SSR models (SSR1 and SSR2, respectively). SOAP and SSR models give the
best estimates of the parameters β1 and β2; SSR models give better estimates of σϵ than
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Figure 4. 3D image of the surface function on C-shaped

domain (color map shown in Figure 3).

Figure 5. Pointwise 95% confidence regions for the linear

SSR estimate, replicate 1.

RMSE RMSE RMSE
β1 β2 σϵ

KRIG 0.0271 0.0098 0.0583
TPS 0.0247 0.0087 0.0612

SOAP 0.0232 0.0079 0.0314
SSR1 0.0232 0.0079 0.0289
SSR2 0.0232 0.0079 0.0289

Figure 6. RMSE of the estimates of the trend parame-

ters β1, β2 and of the error standard deviation σϵ, obtained

via filtered kriging, thin-plate splines, soap-film smoothing and

linear and quadratic SSR models.
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Figure 7. Boxplots of RMSE of the estimates of f , evalu-

ated on a fine grid of step 0.02 over the C-domain, obtained

by the different methods.

any of the other considered methods. Figure 7 shows the boxplots of the RMSE, over the
50 simulation replicates, of the estimate of f , evaluated on a fine grid of step 0.02 over the
C-domain; the boxplots highlight that the best estimates of f are provided by SSR models,
followed by those given by SOAP; these two methods provide significantly better estimates
than TPS and KRIG. Figures 8 and 9 illustrate the reason of this comparative advantage;
these figures show respectively the estimated functions provided by the different methods
in the first simulation replicate (Figure 8), and the corresponding absolute residuals with
respect to true f , always in the first replicate (Figure 9). Figure 9, in particular, shows that
KRIG and TPS estimates have high absolute errors near the inner borders of the C arms;
this "leakage effect" in KRIG and TPS estimates is due to the fact that these two methods
do not take into any account domain boundaries, but instead smooth across them.

Individual 95% confidence intervals for β1 and β2 for the linear SSR estimate obtained
in the first replicate, are respectively given by [−0.521 ,−0.410] and [0.171 , 0.201] (the
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Figure 8. Color maps of f estimates obtained in replicate 1; quadratic SSR is not displayed here as almost indistinguishable

from linear SSR.
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residuals are normally distributed, with Shapiro-Wilk normaly test p-value 0.86). Figure 5
displays pointwise 95% confidence regions for the corresponding f estimate.

6.2. Simulations on a rectangular domain
We also consider a simulation case where there are no problems with irregularly shaped do-
mains and complex boundaries, so that classical methods such as TPS would not encounter
the difficulties highlighted in Section 6.1. This simulation study show that SSR models are
as good as TPS in the case of simple domains. Moreover, in presence of information on the
values of the surface at the domain boundary, this information can be included in the SSR
model as described in Section 5, leading of course to significantly better estimates.
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Figure 10. Left: test function on a simple domain. Right: boxplots of the RMSE of the estimate of the function f , evaluated

on a fine grid of step 0.03, for TPS, SSR models and SSR with known boundary values (SSR bc).

We consider the function f , defined on a square domain, shown in the left panel of
Figure 10. For N = 50 replicates, we sample data from (13) on a regular lattice of n = 400
points, using the following parameter values: β1 = −0.5, β2 = 0.25, σϵ = 0.15, µ1 = 0.3,
σ1 = 0.5, µ2 = 0.7, σ2 = 1.3. The RMSE for the estimates of the parameters β1, β2, σϵ
obtained by TPS, SSR models and SSR models with known boundary value conditions
(SSRbc) are completely comparable, equal in fact when approximated to the third decimal
digit. The boxplots of the RMSE of the estimate of f , evaluated on a fine grid of step 0.03,
are displayed in the right panel of Figure 10: the estimates of f provided by TPS and SSR
are comparable; SSRbc efficiently use the extra information about known boundary values,
resulting in significantly better estimates.

Finally, further simulations based on Wood et al. (2008) also demonstrate that SSR com-
pares favorably to SOAP on functions with strong gradients at the boundary (see Sangalli
et al. 2012).

6.3. Application to Island of Montréal census data
We consider the problem of estimating population density over the Island of Montréal.
The data are derived from the 1996 Canadian census. Figure 1 show the municipality of
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Figure 11. Constrained Delaunay triangulation of the Is-

land of Montréal.

Figure 12. SSR estimate of spatial structure for population

density over the Island of Montréal.

Montréal, along with 493 data points defined by the centroids of census enumeration areas.
Population density is available at each census tract, measured as 1000 inhabitants per
km2. As covariate, we use the binary variable indicating whether a tract is predominantly
residential (1) or commercial/industrial (0). Figures 1 and 11 highlight two areas that are
not part the domain of interest for the study of population density: the Montréal airport,
with some surrounding services and industries, in the south-western part of the island,
and the industrial park in the north-eastern tip, that includes an oil refinery tank farm.
As mentioned in the introduction, it is known that no people live by the river banks in
correspondence of the harbour (east shore) and the public parks (south-west and north-
west shore). We hence impose appropriate (i.e., in this case, homogenous zero) Dirichlet
boundary conditions along these stretches of coast, highlighted in red in Figures 1 and
11; along the remaining coasts we impose Neumann zero conditions, meaning no flow of
population density across the shores. Figure 12 shows the SSR estimate of the spatial
variation structure, the non-parametric part of the model. Notice that the estimate complies
with the imposed boundary conditions, dropping to zero along the mentioned stretches
of coast, thus efficiently including this a priori information. Also, the estimate has not
artificially linked data points on either side of the uninhabited parts; see for instance the
densely populated areas just in the south and west of the industrial park with respect
to the low population density neighborhood just north-east of it. The β coefficient that
corresponds to the binary covariate is estimated to be 1.300; this means that census tracts
that are predominantly residential are in average expected to have 1300 more inhabitants
per km2, with respect to those classified as mostly commercial/industrial; the approximate
95% confidence interval is given by [0.755; 1.845].

7. Discussion

The described technique can be generalized in several directions, for instance to areal data
(see Azzimonti et al. 2012), to general link functions such as the logit, to loss-functions other
than the classical sum-of-squared-errors, thus allowing for very large potential application.
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The covariates themselves, when having a spatial structure, could be modeled as surfaces,
in a functional regression model setting.

An important line of investigation within SSR framework concerns extensions of the
roughness term to more complex partial differential operators; this model extension is par-
ticularly interesting for applications where some a priori knowledge of the problem (physical,
chemical, mechanical or morphological) suggests the choice of a partial differential operator
modeling to some extent the phenomenon under study. Azzimonti et al. (2012) investigates
this research direction, generalizing SSR to penalties involving general second order elliptic
operators. The applied problem there considered concerns the estimation of the blood-flow
velocity field in a section of a carotid artery, using data provided by eco-doppler images. In
this application, physiological knowledge of the phenomenon suggests the theoretical shape
of the velocity field; this knowledge is thus translated into a partial differential operator
and used in the roughness penalty in order to regularize the estimate. This extension also
constitutes a very promising line of research toward the modeling of spatio-temporal phe-
nomena, including dynamical functional data, such as curves and surfaces deforming over
time. Moreover, an approach analogous to the one described here, could also be applied
to the problem of parameter estimation for partial differential equations, and we will be
exploring possible extensions in this direction of the work of Ramsay et al. (2007).

Finally, this model can also be extended to three dimensions, dealing with volumes and
surfaces embedded in three-dimensional spaces. Such model extension would have a strong
impact on forefront applications, as for instance those concerning the analysis of three-
dimensional images of the internal structures of a body provided by diagnostic medical
scanners (angiographies, tomographies, magnetic resonance imaging devices, etc.). It is
apparent that when analyzing these data it would be in many contexts desirable to use
techniques that takes into account the boundary of the problem. For instance, organs such
as brain have complex boundaries, both external and internal, and when studying brain
imaging data it would certainly be of great interest to be able to comply efficiently with
those boundaries.

In future work we also intend to study the link between SSR and the model proposed
by Lindgren et al. (2011), computed using the Integrated Nested Laplace Approximations
(INLA) method for direct Bayesian computations proposed by Rue et al. (2009).

The proposed models have been implemented in R (R Core Team 2011) and Matlab.
Both versions shall be shortly released.
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A. Appendix

A.1. Proof of Proposition 1
The functional Jλ(β, f) in (2) can be rewritten as

Jλ(β, f) =
(
z − Wβ − fn

)t (z − Wβ − fn
)
+ λ

∫
Ω

(∆f)2.

Given f , the unique minimizer β̂(f) of Jλ(β, f) with respect to β is given by

β̂(f) = (WtW)−1Wt(z − fn).

Plugging β̂(f) into Jλ(β, f) we obtain

Jλ(β̂(f), f) = zt Qz − 2 ftn Qz + ftn Qfn + λ

∫
Ω

(∆f)2 .

Our estimation problem is thus reduced to an optimization problem over f only: find
f ∈ H2

n0(Ω) that minimizes

J̃λ(f) =

[
ftn Qfn + λ

∫
Ω

(∆f)2

]
− 2 ftn Qz (14)

where we have dropped the terms not depending on f .
The proof is completed by showing that f̂ , the minimizer of (14) over H2

n0(Ω), is unique
and satisfies (3) for every u ∈ H2

n0(Ω). To prove this result, we exploit a characterization
theorem (see e.g., Braess 2007, Chapter 2) which states that if G is a symmetric, positive
definite, bilinear form on a vector space V , and F is a linear functional on V , then v is the
unique minimizer of

G(v, v)− 2F (v)

in V if and only if
G(v, u) = F (u) for all u ∈ V. (15)

Moreover, there is at most one solution of (15).
The desired result follows immediately from application of the above theorem consider-

ing: V = H2
n0(Ω); the symmetric, positive definite, bilinear form

G(f, u) := ut
n Qfn + λ

∫
Ω

(∆u)(∆f) (16)

and the linear functional F (f) = ftn Qz.
Positive definitiveness of the form G in (16), on H2

n0(Ω), is shown by the following
argument. Suppose G(f, f) = 0 for some f ∈ H2

n0(Ω); then
∫
Ω
(∆f)2 = 0 and ftn Qfn = 0.

The fact that
∫
Ω
(∆f)2 = 0, for f ∈ H2

n0(Ω), implies that f is a constant function on Ω.
Thus, let f(·) ≡ c on Ω, for some constant c. Then ftn Qfn = c2 1t

n Q1n, where 1n is the
n-vector having all entries equal to 1. Note that 1t

n Q1n ̸= 0 because 1n does not belong
to the subspace of Rn generated by the columns of W, and hence the two vectors 1n and
Q1n are not orthogonal. Therefore, ftn Qfn = 0 implies that c = 0, so that f(·) ≡ 0 on Ω,
i.e., G is positive definite on H2

n0(Ω). This concludes the proof.
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A.2. Derivation of problem (5)
In this Section we derive the reformulation of the estimation problem given in (5), that
constitutes our base for the implementation of the finite element method.

The problem of finding f̂ ∈ H2
n0(Ω) that satisfies (3) for every u ∈ H2

n0(Ω), can be
rewritten as the problem of finding (f̂ , g) ∈ H2

n0(Ω)× L2(Ω) that satisfy

ut
n Q f̂n + λ

∫
Ω

g (∆u) = ut
n Qz∫

Ω

g v −
∫
Ω

(∆f̂) v = 0

(17)

for all (u, v) ∈ H2
n0(Ω) × L2(Ω). In fact, if the pair of functions (f̂ , g) ∈ H2

n0(Ω) × L2(Ω)

satisfies (17) for all (u, v) ∈ H2
n0(Ω)× L2(Ω), then f̂ also satisfies (3). On the other hand,

if f̂ ∈ H2
n0(Ω) satisfies (3), then the pair (f̂ ,∆f̂) automatically satisfies the two equations

in (17). Now, asking a slightly higher regularity of the auxiliary function g and of the test
functions v, namely g, v ∈ H1(Ω) instead of g, v ∈ L2(Ω), the problem above may in turn
be reformulated as the problem of finding (f̂ , g) ∈

(
H1

n0(Ω)∩C0(Ω)
)
×H1(Ω) that satisfies

(17) for all (u, v) ∈
(
H1

n0(Ω)∩C0(Ω)
)
×H1(Ω). Moreover, the theory of problems of elliptic

regularity ensure that such f̂ still belongs to H2
n0(Ω) (see, e.g., Lions and Magenes 1973,

Chapter 8). Reformulating the problem as a problem in H1(Ω) is done here in view of its
discretization via the finite element space H1

T (Ω). Finally, Green’s theorem or integration
by parts, yields∫

Ω

g (∆u) = −
∫
Ω

(∇g · ∇u) +
∫
∂Ω

g (∂νu) and
∫
Ω

(∆f̂) v = −
∫
Ω

(∇v · ∇f̂) +
∫
∂Ω

v (∂ν f̂)

where
∫
∂Ω
g (∂νu) = 0 and

∫
∂Ω
v (∂ν f̂) = 0 thanks to the boundary condition on the

normal derivatives of f and u, hence implying that the latter reformulation is equivalent to
the one given in (5).

A.3. Proof of Corollary 1
Problem (5) has the following discrete counterpart: find (f, g) ∈ H1

T (Ω)×H1
T (Ω) that satisfy

(5) for all (u, v) ∈ H1
T (Ω)×H1

T (Ω), with the integrals now computed over ΩT . Exploiting
property (4), we have that for any functions f, g, v in H1

T (Ω)∫
ΩT

v g = vt R0 g and
∫
ΩT

(∇v · ∇f) = vt R1 f .

Moreover, ut
n Qfn = ut L f and ut

n Qz = utLDz. Using these identities, solving the
discrete counterpart of the estimation problem reduces to finding a couple of vectors (f,g) ∈
RK × RK that satisfy

ut L f − λut R1 g = ut LDz

vt R0 g + vt R1 f = 0
(18)

for all (u,v) ∈ RK ×RK . Since (18) must hold for all (u,v) ∈ RK ×RK , this is equivalent
to finding (f,g) ∈ RK ×RK that satisfies the linear system (6), that has been symmetrized
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for computational convenience. Solving this system (6) provides f̂ and, thanks to (4), f̂
identifies the estimate f̂ ∈ H1

T (Ω). Since the system has a unique solution, the finite element
solution to the estimation problem is unique. This can be shown working sequentially on
the two equations composing the system. From the second equation, exploiting the positive-
definiteness and thus invertibility of the matrix R0 (proved below), we get g = −R−1

0 R1 f.
Then plugging this expression for g into the first equation composing the system, thanks to
the fact that (L + λR1 R−1

0 R1) is also invertible (as proved below), we obtain the unique
solution f̂ = (L + λR1 R−1

0 R1)
−1 LDz.

Positive-definiteness of R0 follows immediately from the fact that R0 is the Gramm
matrix associated to set of K linearly independent vectors

(
ψk(ξ1), . . . , ψk(ξK)

)t, for k =
1, . . . ,K, in the inner product space (H1

T (Ω), <v1, v2>), where where <v1, v2>=
∫
Ω
v1 v2 .

Positive-definiteness of (L+λR1 R−1
0 R1) is proved by the following argument. Since L is

positive semi-definite by construction, and R0, and thus R−1
0 , are positive definite, then (L+

λR1 R−1
0 R1) is at least positive semi-definite. Suppose now that ct (L+λR1 R−1

0 R1) c = 0
for some K-vector c. Since

0 = ct (L + λR1 R−1
0 R1) c = ct L c+ λ ctR1 R−1

0 R1 c

and both terms on the right-hand side are non-negative, it follows that ct L c = 0 and
ctR1 R−1

0 R1 c = 0. Being R−1
0 positive definite, the latter implies that R1 c = 0, and this

in turn implies that ct R1 c = 0. Hence

0 = ct R1 c = ct
{∫

Ω

(ψxψ
t
x +ψyψ

t
y)

}
c =

∫
Ω

{
ct(ψxψ

t
x +ψyψ

t
y)c

}
= ||ctψx||22 + ||ctψy||22

where || · ||2 denotes the L2-norm, and this implies that ||ctψx||22 = 0 and ||ctψy||22 = 0.
Thus, both partial derivatives of the piecewise quadratic finite element function ctψ vanish,
and this means that ctψ is a constant function. Since the entries of the vector c are the
values of the function ctψ evaluated at the K nodes, c must have the form (c, . . . , c)t for
some real constant c, i.e., c = c1k. Then, ct L c = c2 1n Q1n. Exploiting this identity, the
fact that ct L c = 0 implies that c = 0, since 1n Q1n ̸= 0, as already noticed in Appendix
A.1. It follows that c = 0, and this proves that the matrix (L + λR1 R−1

0 R1) is positive
definite.

A.4. Proof of Proposition 2
Likewise in the proof of Proposition 1, we reduce the estimation problem to an optimization
problem over f only: find f that minimizes the functional J̃λ(f) in (14) over f ∈ H2(Ω)
with f |∂Ω = f∂Ω. Now fix f̄ to be any function in H2(Ω) such that f̄ |∂Ω = f∂Ω and f̄ has
known gradient ∇f̄ and Laplacian ∆f̄ . If f∂Ω is sufficiently regular, e.g., f∂Ω ∈ H3/2(∂Ω),
this function exists. Moreover, let s be the function in H2

0 (Ω) such that f = s+ f̄ . Holding
f̄ fixed, our optimization problem becomes finding s ∈ H2

0 (Ω) that minimizes

Gλ(s) =

[
(stn + f̄tn)Q (sn + f̄n) + λ

∫
Ω

(∆s+∆f̄)2
]
− 2 (stn + f̄tn)Qz .

This is in turn equivalent to finding s ∈ H2
0 (Ω) that minimizes

G̃λ(s) =

[
stn Qsn + λ

∫
Ω

(∆s)2
]
− 2

{
stn Q (z − f̄tn)− λ

∫
Ω

(∆s)(∆f̄)

}
(19)
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where we have dropped the terms constant with respect to s. To complete the proof, we need
to show that the function ŝ is the unique minimizer over H2

0 (Ω) of G̃λ(s) in (19) if and only
if it satisfies (10) for every u ∈ H2

0 (Ω). This result is proved resorting to the characterization
theorem already evoked in Appendix A.1 and considering: the vector space V = H2

0 (Ω);
the symmetric positive definite bilinear form G(s, u) := ut

n Qsn+λ
∫
Ω
(∆u)(∆s); the linear

functional F (s) = stn Q (z − f̄tn)− λ
∫
Ω
(∆s)(∆f̄).

A.5. Derivation of problem (11)
Likewise in Appendix A.2, the problem of finding s ∈ H2

0 (Ω) that satisfies (10) for every
u ∈ H2

0 (Ω) can be rewritten as follows: find (ŝ, g) ∈ H2
0 (Ω)× L2(Ω) that satisfies

ut
n Q ŝn + λ

∫
Ω

g (∆u) = ut
n Q (z − f̄tn)∫

Ω

g v −
∫
Ω

(∆ŝ+∆f̄) v = 0

(20)

for all (u, v) ∈ H2
0 (Ω)×L2(Ω). Reasoning as in Appendix A.2, we hence notice that, asking

a slightly higher regularity of the auxiliary function g and of the test functions v, namely
g, v ∈ H1(Ω) instead of g, v ∈ L2(Ω), the problem above may in turn be reformulated
as the problem of finding (ŝ, g) ∈

(
H1

0 (Ω) ∩ C0(Ω)
)
× H1(Ω) that satisfies (20) for all

(u, v) ∈
(
H1

0 (Ω) ∩ C0(Ω)
)
×H1(Ω); moreover, the theory of problems of elliptic regularity

ensures that such ŝ still belongs to H2
0 (Ω). Also in this case, this is done in view of the

discretization of the problem via the finite element space H1
T (Ω). Finally, using Green’s

theorem as in Appendix A.2, now implies that the latter reformulation is equivalent to the
one given in (11).

A.6. Proof of Corollary 2
It is convenient to choose f̄ to be the finite element function that coincides with f∂Ω on
the boundary nodes and is 0 on the m interior nodes; recall that this is a datum in our
system. Problem (11) has the following discrete counterpart: find (ŝ, g) ∈ H1

0,T (Ω)×H1
T (Ω)

that satisfies (11) for all (u, v) ∈ H1
0,T (Ω)×H1

T (Ω), with the integrals now computed over
ΩT . Here H1

0,T (Ω) is the subspace of H1
T (Ω) consisting of the finite element functions

that equal zero on boundary nodes; this space is spanned by the m nodal basis functions
corresponding to m interior nodes. The finite element functions s, u ∈ H1

0,T (Ω) are thus
identified by vectors of Rm having as entries the values of these functions at the m interior
nodes. Hence, problem above reduces to finding a couple of vectors (s,g) ∈ Rm × RK that
satisfies

ut L̃ s − λut K̃1 g + λut K̃ν g = ut L̃ z

vt R0 g + vt K̃t
1 s − vt K̃t

ν s = −vt R1 f̄ + vt Rt
ν f̄

(21)

for all (u,v) ∈ Rm ×RK . Since (21) must hold for all (u,v) ∈ Rm ×RK , this is equivalent
to finding (s,g) ∈ Rm × RK satisfying the linear system (21). Solving the system provides
the solution ˆ̃s ∈ Rm that identifies a finite element function ŝ ∈ H1

0,T (Ω). The estimate f̂ ,
having the required fixed values at the domain boundary, is thus given by f̂ = ŝ+ f̄ .
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