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Abstract

A wavelet-based method is proposed to obtain accurate estimates of curves
in more than one dimension and of their derivatives. By means of simulation
studies, this novel method is compared to another locally-adaptive estimation
technique for multidimensional functional data, based on free-knot regression
splines. This comparison shows that the proposed method is particularly
attractive when the curves to be estimated present strongly localized features.
The multidimensional wavelet estimation method is thus applied to multi-
lead electrocardiogram records, where strongly localized features are indeed
expected.

Key words: Multidimensional curve fitting, Derivative estimation,
Electrocardiograms.

1. Introduction

Functional Data Analysis (FDA) is the branch of statistics which focuses
on data that can be seen as the observed value of a functional random variable
(see, e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006). However,
from a practical point of view, every data is observed on a discrete grid and a
measurement error is also present. A crucial step of the analysis thus consists
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in the estimation of the continuous functional data starting from its discrete
observation. Here, in particular, we are especially interested in the estimation
of multidimensional curves and their derivatives. Sangalli et al. (2009) pro-
posed a smoothing technique based on free-knot splines, that was shown to
provide very accurate estimates of multidimensional curves and their deriva-
tives, even when the curve are characterized by spatial inhomogeneities. In
this work we instead describe a technique based on wavelet bases expan-
sion, that is also capable of accurate estimation of multidimensional curves
presenting strongly localized features, such us peaks and oscillations.

Wavelet bases have already proved to be very useful in functional data
analysis, dealing with one-dimensional curves, thanks largely to their nat-
ural local-adaptivity, that allows them to accommodate a wide variety of
functional forms. Besides the problem of curve estimation (see, e.g., Anto-
niadis et al., 1994), other settings where wavelets have been used include for
instance the estimation parameters of stochastic processes (see, e.g., Fŕıas
and Ruiz-Medina, 2011, and reference therein), the framework of functional
regression (see, e.g., Aguilera et al., 2008), as well as functional anova (see,
e.g., Yang and Nie, 2008) and functional classification (see, e.g., Wang et
al., 2007; Berlinet et al., 2008; Antoniadis et al., 2010; Timmermans et al.,
2011, and references therein). Due to the strong increase in the recording of
multidimensional functional data, it seems of interest to extend the field of
application of the above mentioned methods to the multidimensional case,
developing a wavelet-based estimation technique that can accurately handle
multidimensional curves.

Likewise in Sangalli et al. (2009), being our data noisy and discrete ob-
servations of some p-dimensional curve, we look for an estimate that is itself
a proper p-dimensional curve. This means that we discard the simplistic idea
of obtaining an estimate by juxtaposition of p separate smoothing of the p
functional coordinates of the curve. In fact, if the curve has a significant
feature at some point of the physical space, we expect that this will be to
some extent reflected on all p coordinates concurrently; for instance, if the
curve has at some point a discontinuity in some of the derivatives, this will be
present on all p coordinates. For this reason, we develop of a novel estimation
procedure which takes into account simultaneously all the space coordinates
of the multidimensional curve. Moreover, we also consider the case where
the components of error in the p dimensions are correlated, and show how to
efficiently deal with this issue. The proposed estimation technique also pro-
vides consistent estimates of the curve derivatives. It should be noticed that
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wavelet bases have been so far mainly applied in problems where there was
no interest in derivatives, because of the absence of close analytical forms for
smooth wavelet bases, issue that has until now restricted their application
to a confined part of the FDA field. To overcome this limitation, we resort
here to a numerical method (see Strang and Nguyen, 1996) that allows to
obtain derivatives of wavelet estimated data. An additional contribution of
the paper is a scheme for aligning an orthogonal basis so that the sampled
curve values are a better approximation to the scaling coefficients needed
to initialize the discrete wavelet transform, thus obtaining a more accurate
estimation of curve derivatives. An extended abstract of this work appeared
in Pigoli and Sangalli (2011).

1.1. Motivating applied problem: analysis of multi-lead ECG data

Our research has been stimulated by the analysis of Electro Cardio Gram
(ECG) records, collected by the 118 Dispatch Center (the medical operat-
ing emergency unit) in Milano, Italy, as part of the PROMETEO project
“PROgetto sull’area Milanese Elettrocardiogrammi Teletrasferiti dall’Extra
Ospedaliero”. See Ieva et al. (2011) for details. The aim of this Project
is to anticipate diagnostic time in heart ischemia, in order to improve the
prognosis of reperfusive treatments and reduce infarction complications. In
particular, we consider a sample of multi-lead tele-transmitted ECG records,
both physiological and pathological. The estimates here derived via the pro-
posed multidimensional smoothing technique are thus used in Ieva et al.
(2011), where a semi-automatic diagnostic procedure is proposed, based on
the ECG morphology, that is able to classify physiological and pathological
traces.

ECG data have a multidimensional nature, because these records provide
potential differences, named leads, between multiple electrodes; in fact, as it
will be described in Section 6, ECG traces can be seen as eight-dimensional
functional data, whose eight coordinates, corresponding to eight leads, mea-
sure different projections of the same physical dynamics in different direc-
tions. Smoothing of these data hence calls for a technique that takes into
account simultaneously the eight coordinates of this functional data; besides
helping in detecting significant features which reflect on more than one lead,
thus enhancing patter recognition, such procedure provides coherent esti-
mates, where the different projections of the heart dynamics are among them
consistent. Moreover, as it will be clarified later, the components of error on
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the eight leads are correlated, issue that can be appropriately taken into ac-
count within our technique working jointly on the p coordinates. It should
also be noticed that wavelet basis are particularly well suited to capture ECG
shapes, that are characterized by localized strong peaks and oscillations.

As mentioned in the previous section, we devote particular attention to
the computation of estimates that are accompanied by good estimates of
their derivatives. This is payed off in Ieva et al. (2011), where it is shown
that, to better study ECG morphology and efficiently distinguish between
physiological and pathological ECG traces, it is necessary to take into account
both the ECG traces and also their first derivatives.

1.2. Paper outline

The paper is organized as follows. In Section 2 we briefly recall wavelet
bases, we review a numerical method that allows to compute pointwise values
of a wavelet and its derivatives, and we summarize wavelet smoothing for one
dimensional functional data; in this section we moreover derive an optimal
translation of the orthogonal basis so that the sampled curve values are a
better approximation to the scaling coefficients at the finer scale. Section 3
accurately extends wavelet-based estimation techniques to the case of curves
in more than one dimension. Section 4 illustrates the good performances of
the proposed technique, especially in the case of multidimensional functional
data characterized by strongly localized features. In Section 5 we consider
the case where the components of error in the p dimensions are correlated.
Section 6 is devoted to the application to the multi-lead ECG data, that have
been stimulus to this research. Finally, some conclusive considerations are
drawn in Section 7.

2. Wavelets for smoothing 1D data

2.1. An overview on wavelets

We briefly recall wavelet bases for L2(R). For a systematic introduction
to wavelets, see, e.g., Mallat (1999) or Nason (2008). Wavelets are defined
starting from an orthogonal multiresolution:

Definition 2.1 Let {Vj}j∈Z be a sequence of closed subspaces Vj ⊆ L2(R)
and let ϕ ∈ V0. An orthogonal multiresolution for L2(R) is a couple ({Vj}j, ϕ)
such that:

1. Vj ⊂ Vj+1
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2.
⋃

j Vj = L2(R) and
⋂+∞

j=−∞ Vj = {0}
3. {l 7→ f(l)} ∈ Vj ⇔ {l 7→ f(2l)} ∈ Vj+1

4. {ϕ(l − k)}k∈Z is an orthonormal basis for V0 and
∫
R ϕ 6= 0.

The projections of f ∈ L2(R) on the sequence {Vj}j give a progressively
better approximation of f as j increases. The function ϕ is called scaling
function or father wavelet. Thanks to property 3 above, {2j/2ϕ(2jl− k)}k is
an orthonormal basis for Vj. However, it is often more useful exploring the
detail information needed to go from the space Vj to the space Vj+1, starting
from a coarse space V0. This is the reason to introduce the sequence of the
complement spaces Wj = Vj+1\Vj. A mother wavelet is a function ψ ∈ W0 so
that {ψ(l− k)}k is a basis for W0. As a consequence, L2(R) =

⊕
j∈ZWj and

{ψj,k(l)}k = {2 j
2 ψ(2jl − k)}k is an orthonormal basis for L2(R). Therefore,

for each f ∈ L2(R), we have

f =
∑

j

∑

k

〈f, ψj,k〉ψj,k =
∑

k

〈f, ϕj0,k〉ϕj0,k +
+∞∑
j=j0

∑

k

〈f, ψj,k〉ψj,k =

=
∑

k

sj0,kϕj0,k +
+∞∑
j=j0

∑

k

dj,kψj,k,

where 〈·, ·〉 is the scalar product in L2(R), sj0,k := 〈f, ϕj0,k〉 and dj,k :=
〈f, ψj,k〉. The coefficients {sj0,k}k∈Z, {dj,k}j∈Z∩{j>=j0},k∈Z are called discrete
wavelet transform of f . It can be shown that ϕ and ψ satisfy the dila-
tion/refinement equations

ϕ(l) =
∑

k

√
2hkϕ(2l − k) and ψ(l) =

∑

k

√
2gkϕ(2l − k)

for some sequences {hk}k and {gk}k, named respectively scaling filter and
wavelet filter. These equations are essential for the development of the so-
called fast wavelet transform, which computes the discrete wavelet transform
in O(n) operations. It is important to note that smooth and compactly
supported wavelet bases have no analytical form, and they are instead defined
via their scaling and wavelet filters.
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2.2. Computation of pointwise value of wavelets and their derivatives

As mentioned in the Introduction, wavelet basis has so far been mainly
confined to problems in which derivative estimates were not required, this
limitation being due to the absence of a close analytical form for wavelet
basis functions smooth enough for this purpose.

Wavelets have been used in Leung et al. (1998) to compute approximate
function derivatives as difference between the scaling coefficients coming from
different scaling/wavelet bases. This procedure exploits the fact that different
wavelet bases cause different shifts of the function projected on the subspace
VJ−1, so that a pair of bases can be found whose difference approximates
the function variation at that scale. Anyway, this method offers a derivative
estimation on a space that is coarser than the original one. Since higher
order derivatives are estimated through an iterative procedure, evaluation
points become fewer and fewer, resulting in not accurate estimates of the
derivatives. Moreover, a high observation noise strongly worsen this issue,
being necessary to use coarser level scaling coefficients.

Here we instead resort to the numerical method illustrated by Strang and
Nguyen (1996) that allows to compute pointwise values of scaling functions
and their derivatives, even in the absence of a close analytical form for the
wavelet basis. This method is based on a common approach for solving
dilation equations. Its starting point is constituted by the scaling filter {hk}k

and the wavelet filter {gk}k, which are available for all the wavelet bases of
interest. Let 0, . . . , N be the integers in the support of ϕ, where N is in fact
the largest value in its support. The vector of evaluations of ϕ on 0, . . . , N
can be computed as eigenvector of a matrix H, whose elements are obtained
from the coefficients of the scaling filter; in particular, the (i, j)−th entry
of the matrix H, for i, j = 1, . . . , N + 1, is given by Hi,j =

√
2h 2i−j−1 if

0 ≤ 2i − j − 1 < N + 1 and Hi,j = 0 otherwise (see Strang and Nguyen,
1996, for details). Using the dilation equation, ϕ can then be evaluated at
the middle points 1

2
, . . . , N − 1

2
:

ϕ
( l

2

)
=

∑

k

√
2hkϕ(l − k).

Iterating this procedure, is thus possible to compute the desired refinement
of ϕ.

Similarly, starting from the k-th derivative of the dilation equation, the
vector of evaluation of the k-th derivative ϕ(k) on 0, . . . , N can also be com-
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puted as eigenvector of the matrix H corresponding to the eigenvalue 1/2k.
Likewise for ϕ, also ϕ(k) can thus be evaluated on progressively finer grids
thanks to the k-th derivative of the dilation equation:

ϕ(k)
( l

2

)
= 2k

∑

k

√
2hkϕ

(k)(l − k).

The computational cost of these procedure is not high (see Strang and
Nguyen, 1996, for details), since the refinement is computed simply by the
scalar product between the previously computed values of ϕ (or its deriva-
tives) and a suitable upsampling of the filter hk, and matrix H is only
(N +1)× (N +1). For example, N is equal to 19 for the Daubechies wavelet
basis with 10 vanishing moment, which will be used in the simulation studies
of Section 4.

2.3. Wavelet smoothing of functional data

As we recalled in Section 2.1, every function f ∈ L2(R) can be represented
by a scaling/wavelet basis. This can be used to obtain an estimator of a
functional data, starting from its discrete observation. Let the statistical
model be

wi = f(li) + εi, i = 1, . . . , n, n = 2J , J ∈ N, (1)

where f is the true curve, to be estimated, li = i/n are evenly spaced points
and εi are independent and identically distributed (i.i.d.) errors with N(0, σ2)
distribution. The wavelet smoothing procedure consists in changing over to
the wavelet domain, where the model becomes

dj,k = d0
j,k + ρj,k

dj,k being the empirical coefficients corresponding to the data, d0
j,k the true

wavelet coefficients of f , and ρj,k ∼ N(0, σ2
d) the wavelet transforms of the

error. Section 2.4 describes how the empirical coefficients dj,k, and the coef-
ficients sj0,k are computed from the data w1, . . . , wn. Here we instead recall

how the estimates d̂j,k of the true wavelet coefficients d0
j,k can be obtained

starting from the empirical coefficients dj,k. A first idea consists in the so-
called hard-thresholding estimator, which fixes a threshold t and considers
all coefficients below this threshold as coming only from noise, thus setting
d̂j,k = dj,kI{|dj,k|>t}. A more refined idea consists in also shrinking the coeffi-
cients above this threshold, with the aim of removing their component due
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to noise. In particular, the wavelet estimator becomes

d̂j,k = sign(dj,k)(|dj,k| − t)+

which is called soft-thresholding estimator. The corresponding estimate of
the true function f is then given by

f̂(l) =
2j0∑

k=1

sj0,kϕj0,k(l) +

j=J−1∑
j=j0

2j∑

k=1

d̂j,kψj,k(l). (2)

It should be noticed that since wavelet bases are by construction localized
in both space and frequency, (2) very naturally provides a locally adaptive
estimate of the function f .

The level j0 in (2) is the lowest for which thresholding is applied; wavelets
coefficients of levels lower than j0 do not undergo any thresholding. The
choice of this smoothing coefficient depends on the signal to noise ratio of
the data and on the problem under analysis; in general lower signal to noise
ratios lead to choosing lower values of j0 (see, e.g., Nason, 2008). Many
strategies have been instead proposed for the choice of the threshold t (see,
e.g., Cai and Zhou, 2009; Donoho and Johnstone, 1995; Donoho et al., 1995),
among which a popular one is the universal threshold :

t = σ̂d

√
2 log n .

The estimation of σd is based on the fact that, in the wavelet transform, the
wavelet coefficients of the finer level J −1 are essentially pure noise. Donoho
et al. (1995) proposed to use a robust estimator, that is given by the median
of the absolute deviation from the median (MAD) of these coefficients, i.e.,

σ̂d =
median(|dJ−1 −median(dJ−1)|)

0.6745
. (3)

2.4. Computation of the empirical coefficients and translation of scaling and
wavelet basis functions

To initialize the estimating algorithm, it is necessary to compute the
empirical coefficients dj,k from the data w1, . . . , wn. The fast wavelet trans-
form algorithm, described in Beylkin et al. (1991), allows to compute all the
scaling and wavelet coefficients, starting from the coefficients sJ,1, . . . , sJ,n.
A common procedure consists in approximating the latter coefficients with
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the data values w1, . . . , wn. This is justified by the fact that the support of
ϕJ,i is localized around the point li, if J is large enough (i.e., if n is large
enough). For a general discussion on the adequacy of this choice see, e.g.,
Nason (2008). Anyway, since every wavelet basis is defined up to a trans-
lation, it is convenient to look for an appropriate translation τ of the basis
functions such that the error of this approximation is as small as possible.
Here we use the translation τ =

∫
R yϕ(y)dy. We motivate this choice by the

following argument. Approximating f by its first order Taylor expansion, we
obtain

sJ,i =

∫

R
f(l)ϕJ,i(l + τ) dl ≈

∫

R
(f(li) + lf ′(li))ϕJ,i(l + τ) dl

that, exploiting the fact that
∫
R ϕJ,i(l + τ) dl = 1, leads to

sJ,i ≈ f(li) + f ′(li)
∫

R
lϕJ,i(l + τ) dl.

Figure 1: ϕJ,k for the original (dashed black line) and τ -translated (solid blue line)
Daubechies wavelet basis with 10 vanishing moments.

This means that, if the translation τ is such that

∫

R
lϕ(l + τ) dl = 0, (4)

then f(li) is a good approximation of sJ,i, so that, in this case, using the
data value wi to approximate sJ,i seems well justified. If we thus impose the
supplementary condition (4), we obtain (by substitution in the integral of
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y = l + τ)

τ =

∫

R
yϕ(y)dy. (5)

We therefore use the basis associated to the translation τ found above. Figure
1, for instance, shows the effect of this translation on a basis function of
level J , for the Daubechies wavelet basis with 10 vanishing moments. For
this choice of the wavelet basis, the optimal translation suggested by (5) is
τ = 2.130968.

The estimate of the true function f hence becomes

f̂(l) =
2j0∑

k=1

sj0,kϕj0,k(l + τ) +

j=J−1∑
j=j0

2j∑

k=1

d̂j,kψj,k(l + τ)

and the corresponding estimate of the first derivative is

f̂ ′(l) =
2j0∑

k=1

sj0,kϕ
′
j0,k(l + τ) +

j=J−1∑
j=j0

2j∑

k=1

d̂j,kψ
′
j,k(l + τ)

where pointwise values of ϕj0,k, ψj,k, ϕ′j0,k and ψ′j,k are computed as detailed
in Section 2.2. Subsequent derivative estimates are obtained analogously.

3. Wavelet estimation for curves in more than one dimension

We now extend wavelet-based estimation techniques to the case of curves
in more than one dimension. The function f we want to estimate has the
form

f : R 3 l 7→ (
f1(l), . . . , fp(l)

) ∈ Rp

which describes parametric curves in p dimensions. The observed values are
generated by the model

wi = f(li) + εi i = 1, . . . , n = 2J (6)

where εi are i.i.d. multinormal errors with mean the null vector 0 ∈ Rp and
variance-covariance matrix σ2Ip. Our aim is to estimate the function f and
its derivatives. As anticipated in the Introduction, we discard the simplistic
idea of estimating each coordinate function f1, . . . , fp independently, apply-
ing separately on each coordinate the procedure described in the previous
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section. In fact, if the curve has a significant feature at some point of the
physical space, we expect that this will be reflected on all p coordinates con-
currently. For this reason, we develop an estimation technique that takes into
account the vectorial structure of the function to be estimated. In particu-
lar, the proposed estimation technique is such that the same wavelet basis
functions are used for the estimation of all coordinate functions f1, . . . , fp of
f ; a specific wavelet basis function, with a specific frequency and location, is
either used for each of the coordinate functions, in order to capture a feature
of the p-dimensional function f , or is not used for any of the coordinate func-
tions, if unnecessary to capture relevant features of f . Thus, the proposed
soft-thresholding works on p-dimensional wavelet coefficients, so that these
coefficients are set to the null vector 0, or undergo an appropriate shrinkage,
that takes accurately into account all p coordinates.

3.1. Generalization of Universal Threshold in p dimensions

Starting from model (6) and using the orthogonality of the wavelet trans-
form, we have that

dj,k = d0
j,k + ρj,k,

with dj,k,d
0
j,k, ρj,k ∈ Rp, where dj,k are the vectors of the empirical wavelet

coefficients corresponding to the data, d0
j,k are the vectors of the true wavelet

coefficients of the p-dimensional function f , and ρj,k are the wavelet trans-
forms of the noise and have multivariate normal distribution with mean 0 and
variance-covariance matrix σ2

dIp. In order to decide if d0
j,k can be estimated

as the null vector, we focus on the euclidian norm ||dj,k|| of the empirical co-
efficients and try to fix a threshold for this quantity. In particular, we want
to find an estimation procedure that generalizes the 1D universal threshold,
which is based on the following result.

Proposition 3.1 (Donoho et al., 1995) Let {Xn}n be a sequence of i.i.d.
N(0, 1) random variables and An = {maxi=1,...,n |Xi| ≤

√
2 log n}. Then

P(An) → 1 for n → +∞.

Thanks to Proposition 3.1, we have in fact that if the number n of observa-
tions in model (1) is large enough, then the universal threshold t = σ̂d

√
2 log n

contains with high probability all the coefficients coming from noise; recall in
fact that the wavelet transforms ρj,k of the error have distribution N(0, σ2

d).
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In the p-dimensional case, we know that ||ρj,k/σd||2 ∼ χ2(p). We shall
thus look for a threshold which contains, with high probability, n observations
from a random variable having χ2(p) distribution. To find such threshold we
exploit the following well-known theorem on random processes (see, e.g.,
Leadbetter et al. (1983), Theorem 1.5.1).

Theorem 3.1 Let {Yn}n be a sequence of i.i.d. random variables with cu-
mulative distribution function F . Let {un}n be a real sequence such that

n(1− F (un)) → τ for n → +∞,

for some 0 ≤ τ < +∞. Then

P [max
1≤i≤n

Yi ≤ un] → e−τ .

Proof.
P [ max

1≤i≤n
Yi ≤ un] = {F (un)}n =

= {1− (1− F (un))}n ∼ (1− τ

n
+ o(

1
n

))n → e−τ for n → +∞.

¤

Applying Theorem 3.1 it is possible to prove Proposition 3.1 and also the
following more general result.

Proposition 3.2 Let {Yn}n be a sequence of i.i.d. χ2(p) random variables
and An = {maxi=1,...,n Yi ≤ cp log n}, where

cp =

{
2 if p = 1
3 if p ≥ 2.

Then
P(An) → 1 for n → +∞.

Proof. Denoting by F and f respectively the cumulative distribution function
and the density function of χ2(p), we have

lim
n→+∞n(1− F (cp log n)) = lim

n→+∞
1− F (cp log n)

1
n

=
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= lim
n→+∞

−f(cp log n) cp

n

− 1
n2

= lim
n→+∞

2−p/2

Γ(p/2)
cp/2
p n(log n)p/2−1e(− cp log n

2
)

= lim
n→+∞ cp/2

p

2−p/2

Γ(p/2)
n(log n)p/2−1n−cp/2 =

= lim
n→+∞





21/2 2−1/2

Γ(1/2)n(log n)1/2−1n−2/2 = 1
Γ(1/2)

1√
log n

= 0 if p = 1

3p/2 2−p/2

Γ(p/2)n(log n)p/2−1n−3/2 = 3p/2 2−p/2

Γ(p/2)
(log n)p/2−1

√
n

= 0 ∀p ≥ 2.

Then, using Theorem 3.1, we obtain

P [ max
1≤i≤n

Yi ≤ cp log n] → e−0 = 1.

¤
For p = 1 (i.e., when Yi is the square of a Gaussian random variable), Propo-
sition 3.2 leads to the same threshold supported by Proposition 3.1, i.e., the
universal threshold t = σ̂d

√
2 log n on |dj,k|. In the multidimensional case

p ≥ 2, Proposition 3.2 supports instead the threshold σ̂2
d(3 log n) on ||dj,k||2

or, equivalently, the threshold

tp = σ̂d

√
3 log n

on ||dj,k||, where σ̂d is estimated from the coefficients of the finer level via the
MAD estimator defined in (3), pooling together the coefficients corresponding
to the p directions. A simple estimator for multidimensional case is therefore
the following hard-thresholding scheme:

d̂j,k =

{
0 if ||dj,k|| ≤ tp
dj,k if ||dj,k|| > tp.

(7)

3.2. Generalization of soft-thresholding in p dimensions

Likewise hard-thresholding in the 1D case, estimator (7) does not take
into account that also the coefficients larger than the threshold contains
a component due to noise. To obtain a more refined result, we shall use
a soft-thresholding estimator which applies a shrinkage to the coefficients
larger than the threshold tp. However, the generalization to the p-dimensional
setting of the simple shrinkage operation usually performed in 1D case is not
straightforward.

Recall that the empirical wavelet coefficient dj,k is a vector of Rp and
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tp is a threshold on its euclidian norm; in particular, tp identifies an upper
bound for the error contribute to ||dj,k||. Starting from the hypothesis that
the variance of the error on the coefficients is the same in all p directions,
we can consider the direction of the vector dj,k to be mainly determined by
that of the true coefficient d0

j,k. Thus, we choose to estimate d0
j,k keeping

unchanged the direction of the empirical coefficient dj,k and diminishing its
norm by tp i.e.,

if ||dj,k|| > tp then ||d̂j,k|| = ||dj,k|| − tp

with the aim of removing the component of the empirical wavelet coefficients
due to noise. Setting ||d̂j,k|| = ||cdj,k||, we get

c = 1− tp
||dj,k||

so that the soft-thresholding estimator will be

d̂j,k =

{
0 if ||dj,k|| ≤ tp
(1− tp

||dj,k||)dj,k if ||dj,k|| > tp

i.e.,

d̂j,k =

(
1− tp

||dj,k||
)

+

dj,k .

Geometrically, this soft-thresholding procedure works as follows. Consider
a p-dimensional sphere with radius tp and centered in the origin; if the p-
dimensional vector dj,k lies completely inside the sphere, then the estimated

wavelet coefficient d̂j,k is set to 0; otherwise, d̂j,k is obtained from dj,k by
removing the part of dj,k that lies inside the sphere. Figure 2 gives a visual
representation of this procedure for p = 3.

4. Simulation studies

In this section we illustrate, via a two-case simulation study, the good
performances of the proposed wavelet fitting technique for multi-dimensional
functional data, particularly when the true curves to be estimated are char-
acterized by strongly localized features. In the implementation of the tech-
nique, we use here the Daubechies wavelet basis with 10 vanishing moments,
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Figure 2: Visual representation in three dimensions of the soft-thresholding procedure:
only the part of the vector dj,k that lies outside the sphere with radius tp is retained as
significant.

Figure 3: Left panel: curve c1, first dataset. Right panel: curve c51, second dataset;
obtained from curve c1, left panel, by adding strongly localized features.

because this basis is compactly supported and smooth enough to allow the
estimation of second derivatives (see Daubechies, 1988, for details).

As a comparison, we use another locally adaptive regression technique
based on free-knot splines, that has been shown to give functionally very
accurate estimates of multidimensional curves and their derivatives, even
when the curve are characterized by spatially inhomogeneities, having parts
where the curve varies more rapidly and others where it varies more slowly;
see Sangalli et al. (2009). The comparison is carried out on two different
datasets, each consisting of 50 simulated curves. Both the curves in the
first and in the second dataset are spatially inhomogeneous and with varying
roughness, but the curves in the second dataset also present strongly localized
features, which are instead absent in the curves of the first dataset.

First dataset. The curves of the first dataset, c1, . . . , c50, are generated in
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the following way. Independently for i = 1, . . . , 50, we generate three order-5
splines, xi(l), yi(l), zi(l), for l ∈ [−1, 2], with xi, yi, zi having a common knot
vector ki = (ki 1, . . . , ki 20); the locations of the 20 knots in ki are obtained via
i.i.d. sampling from a uniform distribution on [−1, 2], and the coefficients of
the corresponding spline-basis expansions that yield xi, yi and zi are obtained
via i.i.d. sampling from a Gaussian distribution with mean 0 and variance
0.5. We then apply the following non-linear transformation,

xi(l) = log10(xi(l) + 5) yi(l) = log10(yi(l) + 5) zi(l) = log10(l + zi(l) + 5)

where the constant 5 is added to make the logarithm well defined; we thus
consider the curves ci(l) = {xi(l), yi(l), zi(l)} for l ∈ [0, 1]. Note that, thanks
to this non-linear transformation, the 50 curves ci, for i = 1, . . . , 50, are no
longer splines. Figure 3, left panel, gives a 3D visualization of the first gener-
ated curve, c1. We hence simulate from each curve ci on an equispaced grid
of n = 28 points along l, l ∈ [0, 1], adding independent normally distributed
errors ε = {ε[x], ε[y], ε[z]} with mean 0 = (0, 0, 0) and variance-covariance
matrix σ2I3, where σ = 2 · 10−4, thus obtaining a noisy and discrete obser-
vation of the curve: {(xiu, yiu, ziu) : u = 1, . . . , n = 28}. Figure 4 shows the
noisy and discrete observation of curve c1: the top panel displays the three
space coordinates {x1(l), y1(l), z1(l)} (black), superimposed to sampled data
(grey); the center panel displays the first derivatives {x′1(l), y′1(l), z′1(l)}, su-
perimposed to first central differences of sampled data, and the bottom panel
displays the second derivatives {x′′1(l), y′′1(l), z′′1 (l)}, superimposed to second
central differences of sampled data. First and second central differences are
here and in the following displayed, since they give a rough indication, com-
putable from raw data, of the first and second derivatives behavior.

Second dataset. Let us denote the curves in the second dataset by
c51, . . . , c100. For i = 51, . . . , 100, the curve ci is obtained from the cor-
responding curve ci−50, in the first dataset, by adding to ci−50 a three-
dimensional curve characterized by strongly localized features, generated
as follows. Consider three-dimensional wavelets having coefficients dj,k =

(d
[x]
j,k, d

[y]
j,k, d

[z]
j,k), where dj,k are coefficients associated to the Daubechies wavelet

functions with 10 vanishing moments. Independently for i = 51, . . . , 100, we
randomly select 6 wavelet coefficients dj,k among levels j = 4 and j = 5,
and sample the values of these coefficients from a Gaussian distribution with
mean 0 and variance-covariance matrix 0.00032I3; the remaining coefficients
are set to 0. We then apply the inverse fast wavelet transform to the three
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Figure 4: Space coordinates and derivatives of the curve c1, first dataset. Top: three
space coordinates {x1(l), y1(l), z1(l)} (black), superimposed to raw data (grey). Center:
first derivatives {x′1(l), y′1(l), z′1(l)} (black), superimposed to first central differences (grey).
Bottom: second derivatives {x′′1(l), y′′1 (l), z′′1 (l)} (black), superimposed to second central
differences (grey).

coordinates of this wavelet representation to obtain a 3D wavelet wi on an
equispaced grid of 28 points over [0, 1]. The curve ci is hence given by

ci(l) = ci−50(l) + log(6wi(l) + 2) t ∈ [0, 1].

Note that, also in this case a non-linear transformation (log) is applied to
the added components (so that the obtained curves are neither splines, nor
wavelets, nor a combination of the two). Figure 3, right panel, gives a 3D
visualization of the first generated curve of this second dataset, c51. Likewise
for the first dataset, we hence simulate from each curve ci, for i = 51, . . . , 100,
on the equispaced grid of n = 28 points over [0, 1], adding independent nor-
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Figure 5: Space coordinates and derivatives of the curve c51, second dataset. Top: three
space coordinates {x51(l), y51(l), z51(l)} (black), superimposed to raw data (grey). Center:
first derivatives {x′51(l), y′51(l), z′51(l)} (black), superimposed to first central differences
(grey). Bottom: second derivatives {x′′51(l), y′′51(l), z′′51(l)} (black), superimposed to second
central differences (grey).

mally distributed errors with mean 0 and variance-covariance matrix σ2I3,
where σ = 2 · 10−4, thus obtaining a noisy and discrete observation of the
curve: {(xiu, yiu, ziu) : u = 1, . . . , n = 28}. Figure 5 shows the noisy and
discrete observation of curve c51, together with its true space coordinates
and derivatives; a 3D visualization of c51 is given in Figure 3, right panel.

To compare the different smoothing methods on equal terms, we shall
compare the estimates they provide for the same level of data-adaptation.
We measure the data-adaptation of an estimate ĉi = (x̂i, ŷi, ẑi) of the curve
ci = (xi, yi, zi) by the Root Average Squared Error of the estimate with
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respect to the data:

RASEDATA(ĉi) =

=

√√√√ 1

n− 2m

n−m∑
u=1+m

[(
xiu − x̂i(lu)

)2
+

(
yiu − ŷi(lu)

)2
+

(
ziu − ẑi(lu)

)2
]

with m=15 boundary grid points not considered in the computation of RASEDATA.
The performances of the different methods will thus be measured by the er-
rors with respect to the true curve. In particular, we shall consider the
following goodness of fit measures.
Root Mean Squared Error of the curve estimate with respect to true curve:

RMSETRUE(ĉi) =

=

√√√√ 1

n− 2m

n−m∑
u=1+m

[(
xi(lu)− x̂i(lu)

)2
+

(
yi(lu)− ŷi(lu)

)2
+

(
zi(lu)− ẑi(lu)

)2
]
;

Root Mean Squared Error of the estimate of first derivative with respect to
true first derivative:

RMSEder1TRUE(ĉi) =

=

√√√√ 1

n− 2m

n−m∑
u=1+m

[(
x′i(lu)− x̂′i(lu)

)2
+

(
y′i(lu)− ŷ′i(lu)

)2
+

(
z′i(lu)− ẑ′i(lu)

)2
]
;

Root Mean Squared Error of the estimate of second derivative with respect
to true second derivative:

RMSEder2TRUE(ĉi) =

=

√√√√ 1

n− 2m

n−m∑
u=1+m

[(
x′′i (lu)− x̂′′i (lu)

)2
+

(
y′′i (lu)− ŷ′′i (lu)

)2
+

(
z′′i (lu)− ẑ′′i (lu)

)2
]
.

Note that we are here using the term “Root Average Squared Error” to denote
errors with respect to observed data, and the term “Root Mean Squared
Error” to denote errors with respect to true curve values. Notice also that in
the computation of this goodness of fit measures, we disregard m boundary
grid points, because both spline and wavelet estimates may display some
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irregularity in the behavior at the boundary. For instance, it is known that
increasing the smoothness and regularity of the wavelet basis, thus enlarging
its support, may affect negatively the estimate near to the boundary (see, e.g.,
Antoniadis et al., 1994). When there is an interest in an accurate estimation
near the boundary, some corrections can be introduced (see, e.g., Oh et al.,
2001). We do not pursue this here because in the applied problem which
motivated our research the range of the grid of observation points is much
larger than the range of interest, thus making this issue not relevant for our
problem; see Section 6.

Analogously to the selection of the smoothing parameter in Sangalli et al.
(2009), we choose the level j0 in our wavelet fitting technique according to
qualitative considerations, along a Goldilocks approach where this smooth-
ness parameter is selected neither to undersmooth nor to oversmooth the
data, but to lead to a just right degree of smoothness for the data under
analysis. In particular, we choose a level j0, common to all curves, by visu-
ally comparing the first derivative estimates, corresponding to various j0, to
the first central differences; we thus select the level j0 that allows, for most
curves, to fully capture the strong peaks and troughs in the central differ-
ences, without fitting also the very-high frequency variation (due to noise).
This qualitative choice was ex-post comforted by noticing that the chosen j0

yielded estimates whose RASEDATA has the same order of magnitude of the
error standard deviation σ used for data generation. After selection of the
level j0 for the wavelet estimates, we then choose the smoothing parameter
in free-knot splines, common to all curves in each dataset, in order to obtain
comparable values of RASEDATA.

Figure 6 shows the boxplots of RASEDATA, RMSETRUE, RMSEder1TRUE

and RMSEder2TRUE for the estimates of the curves in the first dataset, ob-
tained by free-knot regression splines and wavelet smoothing. In this case,
the two methods gives comparable results: if allowed the same level of data-
adaptation, the estimates provided by the two methods have comparable
errors with respect to the true curves and their derivatives. Figure 7 shows
instead the results found for the second dataset. In this case, wavelet fitting
provides more accurate estimates. In fact, wavelet estimates, even if allowed
comparable or even worse levels of data-adaptation, still provide better esti-
mates of the curves and their derivatives. The comparative advantage of the
wavelet estimation method over free-knot splines is here due to the fact that
wavelets can better capture the strongly localized features of the curves.
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Figure 6: First Dataset. Boxplots of RASEDAT A, RMSET RUE, RMSEder1T RUE and
RMSEder2T RUE.

Figure 7: Second Dataset. Boxplots of RASEDAT A, RMSET RUE, RMSEder1T RUE and
RMSEder2T RUE.

Some of these features may instead be missed even by a locally adaptive es-
timation technique such free-knot regression splines, that has been shown to
provide very accurate estimates of spatially inhomogeneous curves. Figures 8
and 9 illustrate this issue. Figure 8 displays the estimates of the three space
coordinates and of the first and second derivatives of c51, the first curve in the
second dataset; wavelet estimates (blue) and spline estimates (red) are super-
imposed to the true curve (black). The figure highlights that some strongly
localized features of the curve, that are evidenced by large oscillations of
the derivatives, are well captured by wavelet estimates, whilst are missed by
spline estimates, that smooth them away. This can be better appreciated
in the left panel of Figure 9 that, as an example, zooms in the estimates of
the second derivative in the z direction, in correspondence of one of these
features (blue, wavelet estimate; red: spline estimate; black: true curve).
The right panel of the same figure displays the residuals z′′51 − ẑ′′51 for the
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Figure 8: Estimates of the three space coordinates (top) and first and second deriva-
tives (center and bottom) of c51, obtained by wavelet smoothing (blue line) and free-knot
regression splines (red), superimposed to true curve (black)

wavelet estimate (blue) and the spline estimate (red); also this figure high-
lights the smaller errors committed by wavelet estimates in correspondence
of the strongly localized features. It should be mentioned that considering
higher levels of data-adaptation does not improve spline estimates, because
the estimates start interpolating also the noise.

This two-case simulation study shows that the proposed wavelet-based
estimation procedure for multidimensional curves is particularly attractive
when the data are characterized by strongly localized features. In the absence
of these characteristics, the proposed method provides estimates that have a
level of accuracy comparable to that of free-knot regression splines, the latter
technique having though the advantage of not being bound to evenly spaced
grids of 2J points.
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Figure 9: Left: Zoom of the estimates of the second derivative in the z direction of c51, in
correspondence of one of the strongly localized feature; wavelet estimate (blue line) and
spline estimate (red), superimposed to true derivative (black). Right: Residuals z′′51 − ẑ′′51
for the wavelet estimate (blue) and the spline estimate (red).

5. Errors correlated in the p dimensions

The method proposed in Section 3 for the estimation of multidimensional
wavelet coefficients assumes that the p components of the error in the p
dimensions are incorrelated, i.e., V ar(εi) = σ2Ip. However, in many appli-
cations it might be useful to allow for correlation of the components of error
in the various directions, since these may capture the same source of noise.
This is the case, for instance, of the ECG data, whose analysis has motivated
our research. In fact, as it will be clearer from next section, the nature of
these data is such that its p = 8 functional coordinates represent different
projections of the same physical dynamic; for this reason, we expect that
also the errors involve different projections of the noise on the original physi-
cal signal, as well as some independent components due to the measurement
device and other sources or noise.

In this Section we thus generalize the estimation method proposed in
Section 3, to account for correlation of the components of the error in the
p-directions. The model we assumes is the same as in (6), always with i.i.d.
multinormal errors εi with mean the null vector 0 ∈ Rp, but now having some
general variance-covariance matrix S. Since we use an orthogonal wavelet
transform, each vector of wavelets coefficients dj,k also has a multivariate
normal distribution with mean 0 ∈ Rp and variance-covariance matrix S.
Therefore, we have that d′j,kS

−1dj,k ∼ χ2(p), so that the threshold 3 log n
is appropriate for this quantity, according to Proposition 3.2. The main
difference, with respect to the case considered in Section 3, is that we now
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have to estimate the full variance-covariance matrix S of the p-dimensional
coefficients, and not simply the value σ. However, likewise for incorrelated
error components, we can estimate the matrix S from level J−1 coefficients;
in particular, in this work we use the simple estimate provided by the sample
covariance matrix of coefficients dJ−1,k (a robust estimator could also be
used; see, e.g, Brown et al., 2005).

It should be mentioned that the wavelet fitting technique here described
bears some similarities with the method introduced in Downie and Silver-
man (1998), the context though being different. In Downie and Silverman
(1998), the authors aim at estimating a monodimensional function via a
decomposition in multiple wavelet bases, to obtain better estimates with re-
spect to the usual wavelet decomposition; we instead pursue the opposite
goal of estimating a multidimensional functional data and to this goal we use
the same wavelet decomposition in each coordinate direction, for the reasons
highlighted earlier in the paper.

Figure 10: Boxplots of RASEDAT A, RMSET RUE, RMSEder1T RUE and RMSEder2T RUE for
wavelet (left) and wavelet with estimation of the covariance structure (right).

To illustrate the good performances of the proposed technique when the
p components of the error are correlated, we consider the same curves used
to obtain Dataset 1, but with errors εi i.i.d. multinormal with 0 mean and
variance-covariance matrix S = (2, 0.25, 1; 0.25, 0.35, 3; 1, 3, 1.5)× 10−7. Fig-
ure 10 shows the boxplots of RASEDATA, RMSETRUE, RMSEder1TRUE and
RMSEder2TRUE on this dataset, for the multidimensional wavelet technique
proposed in Section 3 and for its modification described in the current sec-
tion. This simple simulation study shows that, when the components of error
in the p dimensions are indeed correlated, appropriately taking this correla-
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tion into account leads to far more robust estimates than if this correlation
was neglected.

6. Application to ECG data

In this section we apply the proposed multidimensional wavelet fitting
technique for the estimation of ECG records collected by the 118 Dispatch
Center in Milano within the PROMETEO project; see Ieva et al. (2011) and
Ieva (2011). These ECG traces have been tele-transmitted from ambulances
during emergency rescue operations (in Italy most emergency rescue opera-
tions are connected to ischemic heart diseases, that alone cause more than
40% of the overall deaths in the country). One of the main goals of the
PROMETEO project is the development of statistical tools capable of clas-
sifying ECG traces based on their morphology, without the need for clinical
criteria; this would help the early detection of heart failures and thus facili-
tate a positive outcome. Indeed, well-timing is fundamental to obtain good
prognosis for this pathologies, and early diagnosis via ECG tele-transmission
is the most important factor to access an effective reperfusive treatment, as
shown for instance in Ieva and Paganoni (2010) and Grieco et al. (2011), who
analyzed data recorded by a network of more than 20 Cardiology Units of
the Milanese urban area together with the 118 Dispatch Center.

The processing of ECG records as functional data is becoming increas-
ingly important with the advent of statistical techniques that exploit curves
shapes in the analysis of these records (see, e.g., Boudaoud et al., 2007; Trig-
ano et al., 2010). As mentioned in the Introduction, these data have a multi-
dimensional nature, because the ECG records provide potential differences,
named leads, between multiple electrodes. In particular, ten electrodes are
used for a standard “twelve-leads” ECG. Among the twelve leads provided
by the experimental device, eight leads are jointly needed to capture all the
information concerning the complex heart dynamics:

• Leads I and II jointly describe heart activity on the sagittal plane; they
are called limb leads because the electrodes for these signals are located
on the limbs.

• Leads V1, V2, V3, V4, V5 and V6 jointly record heart electric activ-
ity on the horizontal plane; these leads are called precordial and the
electrodes that measure them are placed on the chest.
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These eight leads thus constitute projections in different directions of the
same physical dynamics. The left panel of Figure 11 shows the positions
of electrodes and leads, whilst the central panel of the same figure gives
the scheme of the typical structure of a physiological Lead I, indicating the
so-called P wave, QRS complex and T wave.

The considered dataset, coming from PROMETEO datawarehouse, in-
cludes the ECG records of n = 198 subjects, among which 101 are physi-
ological, whilst 97 are affected by Bundle Branch Block, an abnormality in
cardiac conduction; in particular, 49 subjects are affected by Right Bundle
Branch Block (RBBB) and 48 by Left Bundle Branch Block (LBBB). Figure
12 displays the raw data of the eight significant ECG leads for a patient
affected by RBBB; superimposed, in blue color, are the estimates of this
eight-dimensional functional data, yielded by the technique detailed in Sec-
tions 3 and 5. The estimates are obtained using a Daubechies wavelet basis
with 10 vanishing moments, and are limited to the interval corresponding to
the central 210 = 1024 observation points, that anyway covers all important
features of the ECG record.

Figure 11: Left: Scheme of the directions along which the potential difference is measured
for every lead. Center: Template of a physiological ECG record on Lead I. Right: Es-
timated correlation matrix for the eight components of the error, for the patient whose
ECG traces are shown in Figure 12

.

Figure 11, right panel, reports the estimated correlation of the eight com-
ponents of error for this patient (i.e., the sample correlation matrix of the
empirical wavelets coefficients dJ−1,k), whose corresponding estimated co-
variance matrix has been used to obtain this patient ECG estimate; the
matrix highlights the strong correlation structure of the components of error
on the different leads; as noted in the previous Section, this was expected,
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since, given the nature of these data, the errors involve different projections
of the noise on the original physical signal. Figure 13 shows for the same
patient the corresponding estimated first derivatives, superimposed to first
central differences. The obtained estimates of the eight-lead traces and of
their derivatives, for the 198 records in the PROMETEO database, are the
starting point of the analysis described in Ieva et al. (2011). In particular,
with the aim of developing a ECG classification procedure based on ECG
morphology, Ieva et al. (2011) carry out an unsupervised clustering of the
the 198 ECG estimates, proceeding as follows. First, the estimated ECG
traces of the various subjects (and, correspondingly, their estimated first
derivatives) are aligned via landmark registration, where the employed land-
marks identify respectively the P wave, the QRS complex and the T wave.
The analysis thus focus on the registered estimated ECG traces and their
first derivatives, for the 198 subjects, restricted to the time interval T going
from the offset of the P wave to the offset of the T wave,

Fj(t) = {F [p]
j (t)}8

p=1 =
(
Ij(t), IIj(t), V 1j(t), V 2j(t), V 3j(t), V 4j(t), V 5j(t), V 6j(t)

)

F′j(t) = {F ′[p]
j (t)}8

p=1

where t ∈ T and j = 1, . . . , 198. Next, the aligned Fj(t) are clustered via a
multidimensional functional k-mean algorithm using the following distance
between eight-dimensional curves:

d
(
Fj,Fl

)
=

√√√√
8∑

p=1

{ ∫

T

(
F

[p]
j (t)− F

[p]
l (t)

)2
dt +

∫

T

(
F
′[p]
j (t)− F

′[p]
l (t)

)2
dt

}

that is the natural distance in the Hilbert space H1(T ;R8). As shown in Ieva
et al. (2011), this clustering procedure suggests the presence of three clusters
of curves; it turns out that these clusters identify the three groups of physio-
logical, RBBB and LBBB traces, with a confusion matrix where only 11 out
of 198 are missclassified. The authors also show via a cross-validation anal-
ysis that the classification based on the distance above leads to the smallest
missclassification cost, compared to analogous procedures based on distances
involving only the registered estimated ECG traces or only their registered
first derivatives. See Ieva et al. (2011) for details. The very interesting results
achieved within this study, that first uses estimates provided by our wavelet-
based multidimensional curve fitting method, constitute another illustration
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of its efficiency and good performances.
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Figure 12: Eight significant leads in a twelve-leads ECG for a patient affected by Right
Bundle Branch Block; raw data (grey) and multidimensional wavelet estimate (blue).
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Figure 13: Estimate of first derivatives for the eight leads (blue), superimposed to first
central differences of raw data (grey).
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7. Discussion

We have described a wavelet-based method for the accurate estimation
of multidimensional curves and their derivatives; the method also allows for
correlation of the components of error in the p dimensions. As illustrated by
means of simulation studies, the proposed estimation technique is particu-
larly attractive when the multidimensional functional data are characterized
by strongly localized features. In particular, the motivating application for
this research concerned the fitting of multi-lead ECG records, an important
example of real life data having this nature. The estimated ECG traces and
their derivatives are the starting point of the analysis carried out in Ieva et al.
(2011), where they undergo an unsupervised clustering, based on a measure
between curves that involves both the curve and its first derivatives, with
the aim distinguishing physiological and pathological traces.

Thanks to the estimation of the curve derivatives, the proposed proce-
dure can in fact also be used as data smoothing step prior to discrimination
procedures based on semi-metrics in Hilbert spaces, such as those described
in Ferraty and Vieu (2003). Always in a function classification setting, the
described method could be used to extend to the multidimensional case the
scope of the classification procedures referred to in the Introduction. More-
over, this wavelet based technique can for instance also be implemented in
the framework of functional regression (see Ramsay and Silverman, 2005; Fer-
raty and Vieu, 2006; Ferraty et al., 2007, and reference therein); e.g., it can
be used to fruitfully generalize to the multidimensional case the wavelet re-
gression model illustrated in Aguilera et al. (2008). In general, the proposed
method can be of interest, as smoothing step prior to the analysis or com-
bined directly within the functional data analysis procedures, for all those
application where, because of the nature of the multidimensional functional
data, a wavelet-based description of the data is attractive.

The R codes (R Development Core Team, 2009) for the implementation of
the proposed method, as well as one of the simulated examples, are available
at http://mox.polimi.it/∼sangalli/.
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