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Abstract

The problem of curve clustering when curves are misaligned is considered. A novel
algorithm is described, which jointly clusters and aligns curves. The proposed proce-
dure efficiently decouples amplitude and phase variability; in particular, it is able to
detect amplitude clusters while simultaneously disclosing clustering structures in the
phase, pointing out features that can neither be captured by simple curve clustering
nor by simple curve alignment. The procedure is illustrated via simulation studies
and applications to real data.
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A problem, often encountered in functional data analysis, is misalignment of
the data. A typical example, considered by a number of authors, is given by
the children growth curves (see for example Ramsay and Li [18], Sheehy et al.
[24,25], Ramsay and Silverman [19], James [9], Telesca and Inoue [29] and
Gervini and Gasser [6]). Figure 1 shows the growth curves of 93 children (39
boys and 54 girls) from Berkeley Growth Study data (see Tuddenham and
Snyder [30]). Looking at the corresponding growth velocities, also displayed
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Figure 1. Growth curves of 93 children from Berkeley Growth Study data (left) and
corresponding growth velocities (right).

in Figure 1, it is apparent that all curves follow a similar course; this is char-
acterized by a sharp peak of growth velocity between 10 and 16 years, the
pubertal spurt, and a minor velocity peak between 2 and 5 years, the mid-
spurt. However, different children have their growth spurts at different times,
some take more time in their spurts, others less, each child following his/her
personal biological clock. Thus, to learn something about the common growth
path, it is first necessary to align the biological clocks of the children, eliciting
the variability due to the different timings.

Many methods for curve alignment (or curve registration) have been proposed
in the literature. For example, Lawton et al. [13] and Altman and Villarreal
[1] deal with this problem using self-modelling non-linear regression methods,
Lindstrom and Bates [14] develop non-linear mixed-effects models, and Ke and
Wang [11] merge the above approaches in the unifying framework of semipara-
metric non-linear mixed-effects models. A different line of research, advocated
by J. O. Ramsay, is followed by Ramsay and Li [18], Ramsay and Silverman
[19], James [9], Kaziska and Srivastava [10] and Sangalli et al. [22], who define
suitable similarity indexes between curves and thus align the curves, maximiz-
ing their similarities by means of a Procrustes procedure.

The present paper is along the latter line of research, and moves forward from
the problem of curve alignment, per se, focussing on the more complex problem
of curve clustering when curves are misaligned. New questions arise and new
answers are needed within this framework. Look for instance at Figure 2. Do
the two clusters of curves in case B and case C represent two sets of curves
with distinct shapes, or rather do they reflect a clustering in the phase, that
could be eliminated if the curves were suitably aligned? How many set of
curves with distinct shape are present in case D?

We describe a procedure that is able to efficiently cluster and align in k groups
a set of curves. If the number of clusters k is set equal to 1, the algorithm
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implements the Procrustes aligning procedure described in [22], whereas, if no
alignment is allowed, it implements a functional k-mean clustering of curves
(see Heckman and Zamar [8], Tarpey and Kinateder [27], Shimizu and Mizuta
[26] and Cuesta-Albertos and Ricardo [4] for different implementations of the
k-mean algorithm for curve clustering). For this reason, we will name this
procedure k-mean alignment.

The paper is organized as follows. In Section 1 we formally describe the prob-
lem of curve alignment. In Section 2 we consider the problem of curve clus-
tering when curves are misaligned. In Section 3 we describe the scheme of the
k-mean alignment algorithm and in Section 4 we give the technical details
for its implementation. Section 5 illustrates the efficiency of the algorithm
via a simulation study. Section 6 shows the application to growth curves data,
whilst Section 7 is devoted to the application to another real dataset, concern-
ing three-dimensional vascular geometries. Finally, some conclusive considera-
tions are drawn in Section 8. All simulations and analysis of real datasets are
performed in R ([17]).

1 Defining phase and amplitude variabilities

The variability among two or more curves can be thought of as having two
components: phase variability and amplitude variability. Heuristically, phase
variability is the one that can be eliminated by suitably aligning the curves,
and amplitude variability is the one that remains among the curves once they
have been aligned. Consider a set C of (possibly multidimensional) curves
c(s) : R → Rd. Aligning c1 ∈ C to c2 ∈ C means finding a warping function
h(s) : R→ R, of the abscissa parameter s, such that the two curves c1◦h and c2

are the most similar (with (c◦h)(s) := c(h(s))). It is thus necessary to specify
a similarity index ρ(·, ·) : C ×C → R that measures the similarity between two
curves, and a class W of warping functions h (such that c◦h ∈ C, for all c ∈ C
and h ∈ W ) indicating the allowed transformations for the abscissa. Aligning
c1 to c2, according to (ρ,W ), means finding h∗ ∈ W that maximizes ρ(c1◦
h, c2). This procedure decouples phase and amplitude variability without loss
of information: phase variability is captured by the optimal warping function
h∗, whilst amplitude variability is the remaining variability between c1 ◦ h∗

and c2. Note that the choice of the couple (ρ,W ) defines what is meant by
phase variability and by amplitude variability.

Many similarity indexes for measuring similarity between functions have been
considered in the literature on functional data analysis; for a proficient math-
ematical introduction to the issue see the book by Ferraty and Vieu [5]. In
this paper we shall consider the following bounded similarity index between
two curves c1, c2 ∈ C, where C = {c : c ∈ L2(R;Rd), c′ ∈ L2(R;Rd), c′ 6= 0}
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(see also Sangalli et al. [22]):

ρ(c1, c2) =
1

d

d∑

p=1

∫
R c′1p(s)c

′
2p(s)ds√∫

R c′1p(s)
2ds

√∫
R c′2p(s)

2ds
, (1)

with cip indicating the pth component of ci, ci = (ci1, . . . , cid); geometrically,
ρ(c1, c2) is the average of the cosines of the angles between the derivatives of
homologous components of c1 and c2. The two curves are said to be similar
when the index assumes its maximal value 1; for the similarity index defined
in (1), this happens when the two curves are identical except for shifts and
dilations of the components:

ρ(c1, c2) = 1 ⇔ for p = 1, . . . , d , ∃Ap ∈ R+,∃Bp ∈ R :

c1p = Apc2p + Bp .

The choice of this similarity index comes along with the following choice for
the class W of warping functions of the abscissa:

W = {h : h(s) = ms + q with m ∈ R+, q ∈ R} , (2)

i.e., the group of strictly increasing affine transformations.

The couple (ρ,W ) defined in (1) and (2) satisfies the following properties
(a)-(c) that we deem to be minimal requirements for coherence:

(a) The similarity index ρ is bounded, with maximum value equal to 1, so
that two curves c1 and c2 are similar when ρ(c1, c2)=1. Moreover, ρ is:
• reflexive: ρ(c, c)=1, ∀ c ∈ C;
• symmetric: ρ(c1, c2)=ρ(c2, c1), ∀ c1, c2 ∈ C;
• transitive:

[
ρ(c1, c2)=1, ρ(c2, c3)=1

]
⇒ ρ(c1, c3)=1, ∀ c1, c2, c3 ∈ C.

(b) The class of warping functions W is a convex vector space and has a
group structure with respect to function composition ◦.

(c) The index ρ and the class W are consistent in the sense that, if two curves
c1 and c2 are simultaneously warped along the same warping function
h ∈ W , their similarity does not change:

ρ (c1, c2) = ρ (c1◦h, c2◦h) , ∀ h ∈ W.

This guarantees that it is not possible to obtain a fictitious increment
of the similarity between two curves c1 and c2 simply by warping them
simultaneously to c1◦h and c2◦h.

It should be stressed that these minimal requirements concern ρ and W jointly.
In particular, property (c) highlights the importance of a careful and consistent
choice of the couple (ρ, W ). This is mandatory to ensure that the registration
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problem is well-posed and that the registration procedure is coherent. Note
also that properties (b) and (c), together, imply the following:

(d) For all h1 and h2 ∈ W ,

ρ (c1 ◦ h1, c2 ◦ h2) = ρ
(
c1 ◦ h1 ◦ h−1

2 , c2

)
= ρ

(
c1, c2 ◦ h2 ◦ h−1

1

)
.

This means that a change in similarity between c1 and c2 obtained by
warping simultaneously c1 and c2, can also be obtained by warping the
sole c1 or the sole c2. Hence, the similarity that can be obtained by
aligning c1 to c2 is the same as the one that can be obtained by aligning
c2 to c1.

Finally, the similarity index and class of warping functions defined in (1) and
(2) have the following specific feature:

(e) Let W d be the set of all transformations r : Rd −→ Rd such that:

x = (x1, . . . , xd) ∈ Rd 7−→ r(x) = (r1(x1), . . . , rd(xd)) ∈ Rd ,

with r1, . . . , rd ∈ W. Then, for all r1 and r2 ∈ W d,

ρ(r1(c1), r2(c2)) = ρ(c1, c2) .

In words, the similarity index between two curves is unaffected by strictly
increasing affine transformations of one or more components of the curves.

2 Curve clustering when curves are misaligned

Consider the problem of clustering and aligning a set of N curves {c1, . . . , cN}
with respect to a set of k template curves ϕ = {ϕ1, . . . , ϕk} (with {c1, . . . , cN}
⊂ C and ϕ ⊂ C ). For each template curve ϕj in ϕ, define the domain of
attraction

∆j(ϕ) = {c ∈ C : sup
h∈W

ρ(ϕj, c◦h) ≥ sup
h∈W

ρ(ϕr, c◦h), ∀ r 6= j}, j = 1, . . . , k.

(3)

Moreover, define the labelling function

λ(ϕ, c) = min{r : c ∈ ∆r(ϕ)} .

Note that λ(ϕ, c) = j means that the similarity index obtained by aligning c
to ϕj is at least as large as the similarity index obtained by aligning c to any
other template ϕr, with r 6= j. Thus ϕλ(ϕ,c) indicates a template the curve
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c can be best aligned to, and hence λ(ϕ, c) a cluster the curve c should be
assigned to.

Case of known templates. If the k templates ϕ = {ϕ1, . . . , ϕk} were
known, then clustering and aligning the set of N curves {c1, . . . , cN} with
respect to ϕ would simply mean to assign ci to the cluster λ(ϕ, ci) and align
it to the corresponding template ϕλ(ϕ,ci)

, for i = 1, . . . , N .

Here we are interested in the more complex case were the k templates are
unknown.

Case of unknown templates. Ideally, in order to cluster and align the
set of N curves {c1, . . . , cN} with respect to k unknown templates we should
first solve the following optimization problem:

(i) find ϕ = {ϕ1, . . . , ϕk} ⊂ C and h = {h1, . . . , hN} ⊂ W such that

1

N

N∑

i=1

ρ(ϕλ(ϕ,ci)
, ci◦hi) ≥ 1

N

N∑

i=1

ρ(ψλ(ψ,ci)
, ci◦gi),

for any other set of k templates ψ = {ψ1, . . . , ψk} ⊂ C and any other set
of N warping functions g = {g1, . . . , gN} ⊂ W ;

and then, for i = 1, . . . , N ,

(ii) assign ci to the cluster λ(ϕ, ci), and align it to the corresponding tem-
plate, ϕλ(ϕ,ci)

, using the warping function hi.

The optimization problem (i) describes a search both for the set of optimal
k templates and for the set of optimal N warping functions. Note that the
solution (ϕ,h) to (i) has mean similarity 1

N

∑N
i=1 ρ(ϕλ(ϕ,ci)

, ci ◦ hi) equal to 1
if and only if it is possible to perfectly align and cluster in k groups the set
of N curves, i.e., if and only if there exist h and a partition P = {P1, . . . , Pk}
of {1, . . . , N} in k elements, such that ρ(ci ◦ hi, cj ◦ hj) = 1 for all i and j
belonging to the same element of P .

It should also be noted that, thanks to property (c) and to definition (3), if
(ϕ,h) is a solution to (i) then also ({ϕ1◦g1, . . . , ϕk◦gk}, {h1◦gλ(ϕ,c1), . . . , hN ◦
gλ(ϕ,cN )}) is a solution to (i), for any {g1, . . . , gk} ⊂ W ; moreover this so-
lution identifies the same clusters (i.e., is associated to the same partition
P = {P1, . . . , Pk} of {1, . . . , N}).

The optimization problem (i) is not analytically solvable. For this reason, we
propose to simultaneously deal with (i) and (ii) via a k-mean alignment algo-
rithm that iteratively alternates template identification steps and assignment
and alignment steps. In the template identification step we estimate the set of
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k templates associated to the k clusters identified at the previous assignment
and alignment step; in the assignment and alignment step, we align the N
curves to the set of the k templates obtained in the previous template identi-
fication step, and we assign each of the curves to one of the k clusters. As we
shall see, the k-mean alignment algorithm also considers the problem of non-
uniqueness of the solution, by targeting a specific solution via a normalization
step.

3 k-mean alignment algorithm

We describe here the general scheme of the k-mean alignment algorithm. In
the following section we will give the technical details for its practical imple-
mentation.

Let ϕ[q−1] = {ϕ1[q−1], . . . , ϕk [q−1]} be the set of templates after iteration q−1,
and {c1[q−1], . . . , cN [q−1]} be the N curves aligned and clustered to ϕ[q−1]. At the
qth iteration the algorithm performs the following steps.

Template identification step. For j = 1, . . . , k, the template of the jth
cluster, ϕj [q], is estimated using all curves assigned to cluster j at iteration q−1,
i.e. all curves ci[q−1] such that λ(ϕ[q−1], ci[q−1]) = j. Ideally, the template ϕj [q]

should be estimated as the curve ϕ ∈ C that maximizes the total similarity:
∑

i:λ(ϕ[q−1],ci[q−1])=j

ρ(ϕ, ci[q−1]). (4)

Assignment and alignment step. The set of curves {c1[q−1], . . . , cN [q−1]}
is clustered and aligned to the set of templates ϕ[q] = {ϕ1[q], . . . , ϕk [q]}: for
i = 1, . . . , N, the i-th curve ci[q−1] is aligned to ϕλ(ϕ[q],ci[q−1]) and the aligned
curve c̃i[q] = ci[q−1] ◦ hi[q] is assigned to cluster λ(ϕ[q], ci[q−1]) ≡ λ(ϕ[q], c̃i[q]).

Normalization step. After each assignment and alignment step, we also
perform a normalization step. In detail, for j = 1, . . . , k, all the Nj [q] curves c̃i[q]

assigned to cluster j are warped along the warping function (h̄j [q])−1, where

h̄j [q] =
1

Nj [q]

∑

i:λ(ϕ[q],c̃i[q])=j

hi[q] ,

thus obtaining ci[q] = c̃i[q] ◦ (h̄j [q])−1 = ci[q−1] ◦ hi[q] ◦ (h̄j [q])−1. In this way, at
each iteration, the average warping undergone by curves assigned to cluster j
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is the identity transformation h(s)=s. Indeed:

1

Nj [q]

∑

i:λ(ϕ[q],ci[q])=j

(
hi[q] ◦ (h̄j [q])−1

)
(s) = s, j = 1, . . . , k.

The normalization step is thus used to select, among all candidate solutions
to the optimization problem, the one that leaves the average locations of the
clusters unchanged, thus avoiding the drifting apart of clusters or the global
drifting of the overall set of curves. Note that the normalization step preserves
the clustering structure chosen in the assignment and alignment step, i.e.,
λ(ϕ[q], c̃i[q]) = λ(ϕ[q], ci[q]) for all i.

The algorithm is initialized with a set of initial templates ϕ[0] = {ϕ1[0], . . . , ϕk [0]}
⊂ C, and with {c1[0], . . . , cN [0]} = {c1, . . . , cN}, and stopped when, in the as-
signment and alignment step, the increments of the similarity indexes are all
lower than a fixed threshold.

4 Technical details for the implementation of the k-mean alignment
algorithm

We give the details for the practical implementation of the k-mean alignment
algorithm that we used in the simulation studies and applications illustrated
in the following sections. This implementation is based on the couple (ρ,W )
defined in (1) and (2); by appropriate modifications of the technical details
here described, it can be adapted to any choice of (ρ,W ) satisfying (a), (b),
and (c).

When implementing the k-mean alignment algorithm, it should be first no-
ticed that in most practical situations the N curves to be clustered and aligned
are defined on finite intervals and that the curve domains may also differ from
curve to curve. For this reason, in the assignment and alignment step we
estimate ρ(ϕj [q], ci[q−1] ◦ hi[q]) by replacing the integrals on R with the corre-
sponding integrals on the intersection of the domains of ϕj [q] and ci[q−1] ◦ hi[q].
Moreover, in order to prevent the algorithm from targeting fictitious and non-
admissible solutions (with aligned curves having non-intersecting domains),
we set restrictions on the warping functions of the class W , by fixing maximal
and minimal shifts and dilations allowed within each assignment and align-
ment step. The solution found by k-mean alignment algorithm is pretty robust
to these constraints, provided that they are reasonable, i.e. they are neither
so narrow that the optimal warping functions are found in correspondence
of the maximal/minimal shifts or dilations, nor so broad that the solution
is non-admissible (with aligned curves having non-intersecting domains). In
particular, in the simulation studies and applications reported in the follow-
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ing sections, the allowed shift in each assignment and alignment step was
restricted within ±10% of the minimal length of the original curve domains,
and the allowed dilation was restricted within 0.9 and 1.1 (these constraints
worked well in all the situations we have considered).

In the template identification step, we estimate the template ϕj [q] over the
domain identified by the union of the domains of the curves assigned to the
jth cluster at the previous iteration. We do not attempt to estimate ϕj [q]

as the curve that maximizes the total similarity (4), but we estimate it via
Loess (see for example Cleveland and Grosse [3]); this adaptive fitting method
keeps the variance of the estimator of the template as constant as possible
along the abscissa (see for example Hastie and Tibshirani [7]), given that the
domains of the curves are different. In particular, since only first derivatives
enter the definition of ρ given in (1), for the couple (ρ,W ) here considered it
is sufficient to estimate the first derivative ϕ′

j [q] of the template ϕj [q]. In the
present implementation of the algorithm we thus estimate ϕ′

j [q] by means of
Loess, with Gaussian kernel and appropriate smoothness parameter, applied
to the first derivatives of the curves assigned to the jth cluster at the previous
iteration.

We choose the k initial templates {ϕ1[0], . . . , ϕk [0]} at random among the N
original curves, with the only requirement that the k chosen curves, even when
aligned, are not similar (i.e., do not have similarity equal to 1). Finally, the al-
gorithm is stopped when in the assignment and alignment step the increments
of the similarity indexes are all lower than 0.01 (i.e., 1% of the achievable
maximum).

5 Simulation studies

In this section we illustrate the potential of the k-mean alignment algorithm
described in Sections 3 and 4, through a four-case simulation study.

5.1 Data generation

Consider the prototype curve:

c(s) = 1 ∗ sin(s) + 1 ∗ sin
(

s2

2π

)
, 0 ≤ s ≤ 2π . (5)
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Figure 2. Curves simulated in case A, case B, case C, and case D. Different colors
and curve styles are used to improve the visualization of the curves, but are neither
related to the curve generation nor to any curve clustering.

Case A. We simulate 90 curves from prototype (5), with small errors in
amplitude and phase, i.e. for i = 1, . . . , 90 we generate

c
[A]
i (s) = (1 + ε1i) ∗ sin(ε3i + (1 + ε4i)s) + (1 + ε2i) ∗ sin

(
(ε3i + (1 + ε4i)s)

2

2π

)
,

0 ≤ s ≤ 2π ,

where the errors ε are all independent and normally distributed with mean 0
and standard deviation 0.05. The simulated 90 curves are displayed in case A
of Figure 2.

Case B. The 90 curves displayed in case B of Figure 2, c
[B]
1 , . . . , c

[B]
90 , are

obtained as follows:
- for i = 1, . . . , 45, c

[B]
i = c

[A]
i ;

- for i = 46, . . . , 90, c
[B]
i is obtained from c

[A]
i by modifying its amplitude; in

particular, instead of considering as prototype the curve in (5) we take as
prototype

2 ∗ sin(s)− 1 ∗ sin(
s2

2π
) ,
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using the same amplitude and phase errors that were sampled for c
[A]
46 , . . . , c

[A]
90 ,

i.e. for i = 46, . . . , 90 we consider

c
[B]
i (s) = (2 + ε1i) ∗ sin(ε3i + (1 + ε4i)s) + (−1 + ε2i) ∗ sin

(
(ε3i + (1 + ε4i)s)

2

2π

)
,

0 ≤ s ≤ 2π .

The two clusters of curves visible in case B of Figure 2 thus correspond to two
prototype curves with distinct shapes.

Case C. The 90 curves displayed in case C of Figure 2, c
[C]
1 , . . . , c

[C]
90 , are

obtained as follows:
- for i = 1, . . . , 45, c

[C]
i = c

[A]
i ;

- for i = 46, . . . , 90, c
[C]
i is obtained from c

[A]
i by modifying its phase; in par-

ticular, we substitute each abscissa s with the modified abscissa

−1

3
+

3

4
s ,

using the same amplitude and phase errors that were sampled for c
[A]
46 , . . . , c

[A]
90 ,

i.e. for i = 46, . . . , 90 we consider

c
[C]
i (s) = (1 + ε1i) ∗ sin

(
− 1

3
+ ε3i +

(
3

4
+ ε4i

)
s
)
+

+ (1 + ε2i) ∗ sin
(

(−1
3

+ ε3i + (3
4

+ ε4i)s)
2

2π

)
, 0 ≤ s ≤ 2π.

Hence, the two clusters of curves visible in case C of Figure 2 do not corre-
spond to two prototype curves with distinct shapes, but are instead due to
a clustering in the phase; all curves, if suitably aligned, belong to the same
amplitude cluster.

Case D. The 90 curves displayed in case D of Figure 2, c
[D]
1 , . . . , c

[D]
90 , are

obtained as follows:
- for i = 1, . . . , 30, c

[D]
i = c

[A]
i ;

- for i = 31, . . . , 45, c
[D]
i is obtained from c

[A]
i via the modification in phase

described for case C, and, for i = 31, . . . , 60, c[D]
i = c

[C]
i (modification in phase);

- for i = 61, . . . , 90, c
[D]
i = c

[B]
i (modification in amplitude).

Thus, among the three clusters of curves visible in case D of Figure 2, only
two amplitude clusters are present, and one of the two has associated a further
clustering in the phase.
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5.2 Data analysis with k-mean alignment

We shall now test the k-mean alignment algorithm on these four simulated
cases. We will see that in all cases the algorithm successfully detects the true
amplitude clusters, while also disclosing the true clustering structures in the
phase. Moreover the procedure efficiently separates amplitude and phase vari-
ability.

In order to show the gain obtained by this joint clustering and alignment
procedure with respect to a simple clustering procedure where no alignment
is allowed, we shall also perform simple clustering of the curves by a k-mean
algorithm without alignment, always using the similarity index defined in (1).

Case A. Figure 5 shows the aligned curves and warping functions result-
ing from 1-mean alignment of A curves. Figure 3 shows the boxplot of the
similarity indexes between the original A curves and their mean estimated
by Loess ("A, orig"), and the boxplots of the similarity indexes between the
k-mean aligned curves and the associated estimated templates, for k = 1, 2, 3
("A, k=1", "A, k=2" and "A, k=3", respectively). Figure 4 displays the cor-
responding means of the similarity indexes (orange circles), together with the
means of the similarity indexes that would be obtained by the simple k-mean
algorithm without alignment (black circles); note that for k=1 without align-
ment, the plot shows the mean of the similarity indexes between the original
A curves and their mean curve estimated by Loess.

Figures 3 and 4 show that the 1-mean alignment procedure leads to an evident
increase of the similarity indexes, with respect to the similarities of the original
curves, leaving not much scope for further improvement when k is set equal
to 2 or 3 in the clustering and alignment procedure. Thus, this procedure
correctly detects k = 1 amplitude cluster. Moreover, it efficiently elicits the
phase variability of the curves, captured by the warping functions displayed
in Figure 5, separating it from the the amplitude variability, which is the
variability of the aligned curves.

Figure 4 illustrates the gain offered by this joint clustering and aligning proce-
dure with respect to simple clustering without alignment. If phase variability
is not elicited, and a simple k-mean algorithm without alignment is performed,
this wrongly suggests the existence of multiple clusters. Furthermore, not even
with three clusters, k-mean clustering without alignment is able to reach the
similarities attained by 1-mean alignment.
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Figure 3. Left: boxplots of similarity indexes between the original curves and their
mean curve estimated by Loess (the scale of the plot is from 0 to 1). Right: boxplots
of similarity indexes of the original curves (which do not appear in full since the
scale of the plot is now from 0.6 to 1) and boxplots of the similarity indexes between
the k-mean aligned curves and their estimated templates, for k = 1, 2, 3 (cases A,
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Figure 5. Case A: 1-mean aligned curves with superimposed estimated template
(black line) and corresponding warping functions.
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Figure 6. Case B: 1-mean and 2-mean aligned curves with superimposed estimated
templates (black lines) and corresponding warping functions. The colors of aligned
curves and warping functions depend on the amplitude cluster.

Case B. Figure 6 shows the aligned curves and warping functions resulting
from 1-mean alignment and 2-mean alignment of B curves (top and bottom,
respectively). The 1-mean alignment fails to give a clear picture of the single
amplitude cluster that is looked for, since the aligned curves still appear to
be separated in two groups; moreover two clusters are evident in the phase.
A better picture is instead provided by the 2-mean alignment, with the 2
amplitude clusters neatly separated and no clustering in phase.
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Figure 3 shows the boxplot of the similarity indexes between the original B
curves and their mean estimated by Loess ("B, orig"), and the boxplots of the
similarity indexes between the k-mean aligned curves and the associated esti-
mated templates, for k = 1, 2, 3 ("B, k=1", "B, k=2" and "B, k=3" respec-
tively). Figure 4 displays the corresponding mean similarities (orange circles).
Note that 1-mean alignment leads to a large increase in the similarities, with
respect to the similarities of the original curves, but a further considerable
gain can be obtained by setting k=2 in the clustering and aligning procedure,
whereas an eventual choice of k=3 is not justified by an additional increase in
the similarities. Thus, the procedure correctly identifies 2 amplitude clusters.

We can compare the similarities attained by 2-mean alignment of B curves
to the ones attained by 1-mean alignment of A curves. In fact, since half of
the B curves coincide with the corresponding A curves, and the other half is
obtained from the corresponding A curves by a common modification of their
amplitude, one expects that 2-mean alignment of B curves should lead to a
comparable result, in terms of similarities, with respect to 1-mean alignment
of A curves. This is confirmed by inspection of the boxplots.

Figure 4 also displays the mean of the similarity indexes that would be ob-
tained by the simple k-mean algorithm without alignment (black circles; "B, k=
1", "B, k =2", "B, k =3"), illustrating the gain offered by k-mean alignment
with respect to k-mean without alignment.

Case C. Figure 7 shows the aligned curves and warping functions resulting
from 1-mean alignment and 2-mean alignment of C curves (top and bottom,
respectively). In this case, the 1-mean alignment already seems to give good
results, with the curves nicely aligned in one single group, and two clusters
evidenced in phase. Also the 2-mean alignment visually gives good results,
with two neatly separated amplitude clusters and no clustering in phase. But,
can 2 amplitude clusters really capture the similarity of the 90 curves better
than simply 1 cluster? Figure 3 shows the similarity indexes of the original C
curves and of the k-mean aligned curves, for k =1, 2, 3 ("C, orig", "C, k =1",
"C, k=2" and "C, k=3" respectively). Figure 4 show the corresponding mean
similarities (orange circles). Note that the similarities attained with k = 1
amplitude cluster are already very large and the use of k = 2 amplitude
clusters is not paid off by a further reasonable gain in the similarities. Thus,
the clustering and alignment procedure correctly suggests that k=1 amplitude
cluster is sufficient to capture the similarity of the curves. Hence, the clustering
observed in Figure 3, case C, is due to clustering in the phase, and it is captured
by the warping functions relative to 1-mean alignment of the curves. Note
that when k=2, the clustering and alignment procedure uses the unnecessary
second amplitude cluster to explain a clustering that is instead present in the
phase.

15



0 2 4 6 8

−
2

−
1

0
1

2

Aligned curves (Case C)

s

k 
= 

1

Warping functions

s
0 2 4 6

0
2

4
6

0 2 4 6 8

−
2

−
1

0
1

2

s

k 
= 

2

s
0 2 4 6

0
2

4
6

Figure 7. Case C: 1-mean and 2-mean aligned curves with superimposed estimated
templates (black lines) and corresponding warping functions. The colors of aligned
curves and warping functions depend on the amplitude cluster.

The fact that the clustering of the curves is in the phase, rather then in the
amplitude, can not of course be detected by simple k-mean clustering without
alignment. Moreover, as shown by the mean similarities displayed in Figure 4
(black circles, "C, k =1", "C, k =2", "C, k =3"), not even with three clusters
k-mean clustering without alignment can reach the similarities attained by
1-mean alignment.

Case D. Finally, Figure 8 shows the aligned curves and warping functions
resulting from 1-mean, 2-mean and 3-mean alignment of D curves (top, center
and bottom, respectively). The boxplots of the similarity indexes, shown in
Figure 3 ("D, orig", "D, k = 1", "D, k = 2" and "D, k = 3"), and the corre-
sponding mean similarities in Figure 4 (orange circles), correctly suggest to
use 2 amplitude clusters. The 2-mean alignment procedure efficiently identifies
the 2 amplitude clusters and evidences that one of the two clusters (the green
one in Figure 8, k =2) has associated a further clustering in the phase. Note
that when k =1, the procedure tries to explain the clustering of D curves by
imputing it to the phase, where it finds three clusters of warping functions,
but the procedure fails to give a clear picture of the single amplitude cluster.
Whereas, when k = 3, the procedure uses the unnecessary third amplitude
cluster to explain a clustering that is instead present in the phase, as noticed

16



0 2 4 6 8

−
2

−
1

0
1

2

Aligned curves (Case D)

s

k 
= 

1

Warping functions

s
0 2 4 6

0
2

4
6

0 2 4 6 8

−
2

−
1

0
1

2

s

k 
= 

2

s
0 2 4 6

0
2

4
6

0 2 4 6 8

−
2

−
1

0
1

2

s

k 
= 

3

s
0 2 4 6

0
2

4
6

Figure 8. Case D: 1-mean, 2-mean and 3-mean aligned curves with superimposed
estimated templates (black lines) and corresponding warping functions. The colors
of aligned curves and warping functions depend on the amplitude cluster.

for case C.

Similarly to what has been noticed for case C, the simple k-mean algorithm
without alignment can not distinguish clustering in amplitude and clustering
in phase.

6 An application to the analysis of growth data

In this section we present the results obtained by applying the k-mean align-
ment algorithm to the Berkeley Growth Study data. This data set includes the
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Figure 9. Results of k-mean alignment of growth curves, for k=1, 2: aligned growth
curves (with superimposed estimated templates, in black) and corresponding growth
velocities (with superimposed first derivatives of estimated templates, in black),
together with warping functions. The colors of aligned curves and warping functions
depend on the amplitude cluster.
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Figure 10. Figure obtained from Figure 9 displaying in blue the growth curves,
growth velocities and warping functions of boys and in pink the ones of girls.
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Figure 11. Left: boxplots of similarity indexes for original growth curves and k-mean
aligned growth curves, k = 1, 2, 3). Right: means of similarity indexes obtained by
k-mean alignment and by k-mean without alignment.

heights (in cm) of 93 children, measured quarterly from 1 to 2 years, annually
from 2 to 8 years and biannually from 8 to 18 years. We estimate the growth
curves by means of monotonic cubic regression splines (see Ramsay and Silver-
man [19]), implemented using the R function smooth.monotone available in
the fda package [20]. We shall use the similarity index ρ and class of warping
functions W defined in (1) and (2). It should be recalled that this similarity
index ρ is unaffected by strictly increasing affine transformations of the curves
(see (e)) (and thus also by strictly positive dilations of the curve first deriva-
tives). Thus, when we cluster and align the curves, the focus is not on the
absolute heights of the children or on their more or less pronounced growths,
but rather in their growth patterns. Moreover, using as class of warping func-
tion the class W of strictly increasing affine transformations, we are allowing
for constant modifications of the running speeds of the children biological
clocks.

Figure 9 shows the results obtained by 1-mean and 2-mean alignment of these
curves. The boxplots of the similarity indexes and the corresponding mean
similarities attained by k-mean alignment, for k=1, 2, 3, shown in Figure 11,
suggest that the correct number of amplitude clusters is just 1; in fact, the
choice of k=2, in the clustering and alignment procedure, is not payed off by
a reasonable further gain in the similarities.

Since, out of the 93 children, 39 are boys and 54 are girls, we might wonder if
the analysis points out some differences among them (notice that here we are
not performing any supervised classification of boys and girls). Figure 10 is
obtained from Figure 9 displaying in blue the growth curves, growth velocities
and warping functions of boys and in pink the ones of girls. Let us focus
on 1-mean alignment, which is the one suggested by the analysis above. The
corresponding warping functions show a pretty neat separation of boys and
girls in the phase. This highlights that the biological clocks of boys and girls
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run at different speeds; that is to say, boys and girls follow a common growth
path, but boys start to grow later, having warping functions with smaller
intercepts, and grow more slowly, having warping function with smaller slopes.
Another clearly expressed feature emerges from the corresponding 1-mean
aligned growth curves: if the biological clocks of the children are registered by
1-mean alignment, then the height of boys stochastically dominates the one of
girls for any registered biological age. Finally, boys seem also to have a more
pronounced growth, especially during puberty, as highlighted by their more
prominent growth velocity peak.

Note that if, for some reasons, 2-mean alignment is preferred, the resulting
picture is not so easily interpretable and needs a more complex description;
this is due to the fact that the information related to the growth curves and
growth velocities, and to the running speeds of the biological clocks of boys and
girls, is not so neatly decoupled. Indeed, the main difference between the two
amplitude clusters, identified by 2-mean alignment, is relative to the early or
late position of the main peak in growth velocity. Since all boys belong to one
cluster and most of the girls to the other, one would tend to read this again as a
difference in the timings of growth spurts; but this is not a fair interpretation,
since it is also necessary to take into account the different running speeds
of the personal biological clocks, represented by the warping functions. On
the whole, the picture generated by 2-mean alignment is out of focus. This
seems analogous to what happened in case C of the simulation study: when the
clustering and alignment procedure was asked to identify 2 amplitude clusters,
it used the unnecessary second cluster to explain a clustering structure that
was instead present in the phase.

7 An application to the analysis of three-dimensional cerebral vas-
cular geometries

In this section, k-mean alignment is used to improve upon the exploratory
statistical analyses of the AneuRisk Project 1 dataset (previous analyses are
detailed in Sangalli et al. [21,22]). The AneuRisk Project is a joint research
program that aims at evaluating the role of vascular geometry and hemody-
namics in the pathogenesis of cerebral aneurysms. The data considered in the
analyses include the three spatial coordinates (in mm) of 65 Internal Carotid

1 The project involves MOX Laboratory for Modeling and Scientific Computing
(Dip. di Matematica, Politecnico di Milano), Laboratory of Biological Structure
Mechanics (Dip. di Ingegneria Strutturale, Politecnico di Milano), Istituto Mario
Negri (Ranica), Ospedale Niguarda Ca’ Granda (Milano) and Ospedale Maggiore
Policlinico (Milano), and is supported by Fondazione Politecnico di Milano and
Siemens Medical Solutions Italia.
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Figure 12. Top left: first derivative x′, y′, z′ of the three spatial coordinates of ICA
centerlines. Top center: boxplots of similarity indexes for original curves and k-mean
aligned curves, k=1, 2, 3. Top right: means of similarity indexes obtained by k-mean
alignment and by k-mean without alignment. Bottom: first derivatives of 1-mean and
2-mean aligned curves (left and right respectively).

Artery (ICA) centerlines, measured on a fine grid of points along a curvilinear
abscissa (in mm), decreasing from the terminal bifurcation of the ICA towards
the heart. Estimates of these three-dimensional curves are obtained by means
of three-dimensional free-knot regression splines, as described in Sangalli et al.
[23]. The first derivatives, x′, y′, z′, of estimated curves are displayed in Figure
12, top left.

In Sangalli et al. [22] the 65 centerlines are aligned (or 1-mean aligned, as we
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Figure 13. Three-dimensional image of
the estimated templates of the 2 am-
plitude clusters, found by 2-mean align-
ment of ICA centerlines. The template of
the orange cluster is the prototype of an
Ω-shaped ICA (one siphon), whereas the
one of the green cluster is the prototype
of an S-shaped ICA (two siphons).

Figure 14. Three-dimensional image of
the estimated templates of the 2 clus-
ters found by simple 2-mean clustering
without alignment of ICA centerlines. It
should be noticed that the two templates
appear to have almost the same morpho-
logical shape, and seem to differ mainly
in their phase.

would now say) according to the couple (ρ,W ) defined in (1) and (2). Figure
12, bottom left, displays the first derivatives of the aligned centerlines; the
figure shows that the amplitude variability of the 1-mean aligned curves is
mostly concentrated in values of the abscissa between -50 and -20. A possible
explanation for this fact relates it to the difference in shape for ICA’s, along
a classification proposed by Krayenbuehl [12]; this classification discriminates
between Γ-shaped, Ω-shaped, and S-shaped ICA’s, according to the form of
their distal part, which may resemble the letters Γ, Ω or S (in presence of zero,
one, or two siphons, respectively).

We want here to explore this explanation by means of k-mean alignment.
Looking at the boxplots of the similarity indexes and the corresponding mean
similarities attained by k-mean alignment, it can be argued that the use of
k = 2 amplitude clusters leads in fact to a reasonable further gain in the
similarities with respect to k=1, whilst no additional improvement is obtained
for k = 3. Thus the k-mean alignment algorithm suggests the presence of
k = 2 amplitude clusters within the analyzed centerlines. Figure 12 compares
the first derivatives of 1-mean aligned curves and the first derivatives of 2-
mean aligned curves. Indeed, the two amplitude clusters identified by 2-mean
alignment could be described as the Ω-shaped ICA’s cluster (orange) and S-
shaped ICA’s cluster (green). This can be better appreciated in Figure 13
where a three-dimensional visualization of the estimated template curves of
the two amplitude clusters is displayed. In the end, we can say that only
two shape types are present in the AneuRisk dataset; among the 65 ICA’s,
35 ICA’s belong to the cluster whose template is Ω-shaped, while 30 ICA’s
belong to the cluster whose template is S-shaped.

Since the shape of the ICA influences the pathogenesis of cerebral aneurysms
through its effects on the hemodynamics (as discussed in Piccinelli et al. [16],
Sangalli et al. [21,22,23]), this classification of the ICA centerlines could be
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helpful in the determination of the risk level of a given patient.

An analysis of these data by simple k-mean clustering without alignment does
not instead give interesting insights about this problem. Figure 14 displays the
two templates of the clusters obtained by 2-mean clustering without alignment.
Notice that the two templates appear to have almost the same morphological
shape, and seem to differ mainly in their phase. For these data, the simple
k-mean clustering seems to be driven by phase variability, that has not been
appropriately elicited, and fails to identify different morphological shapes.

8 Discussion

We described the problem of misaligned curve clustering and proposed an
algorithm (k-mean alignment) that jointly clusters and aligns curves with
respect to k unknown templates. We tested the novel procedure via both
simulated and real cases. In all testing situations, k-mean alignment has been
able to efficiently detect true amplitude clusters and also to disclose clustering
structures in the phase, pointing out features that can neither be captured by
simple k-mean clustering without alignment nor by simple curve alignment
without clustering.

Only very recently Tang and Muller [28] have proposed another approach to
face the problem of curve clustering when curves are misaligned. The main
difference with respect to our approach is that the method proposed by the
two authors aims first at aligning the curves, within what could be potential
curve clusters, and only afterwards, in a subsequent and separate stage of the
analysis, cluster the previously aligned curves, by means of classical clustering
methods. Our procedure aims instead at jointly clustering and aligning the
curves.

During the revision process of this paper a few other contributions appeared
on the problem of clustering and alignment of functional data ([2], [15]), high-
lighting the growing interest for this topic.
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