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Abstract

We deal with the problem of efficiently estimating a 3D curve and its deriva-
tives, starting from a discrete and noisy observation of the curve. This problem
is now arising in many applicative contexts, thanks to the advent of devices that
provide 3D images and measures, such as 3D scanners in medical diagnostics. Our
research, in particular, stems from the need for accurate estimation of the cur-
vature of an artery, from image reconstructions of 3D angiographies. This need
has emerged within AneuRisk Project, a scientific endeavor which aims at inves-
tigating the role of vessel morphology, blood fluid-dynamics, and biomechanical
properties of the vascular wall, on the pathogenesis of cerebral aneurysms.

We develop a regression technique that exploits free knot splines in a novel
setting, to estimate 3D curves and their derivatives. We thoroughly compare this
technique to a classical regression method, local polynomial smoothing, showing
that 3D free knot regression splines yield more accurate and efficient estimates.

Keywords and phrases. Functional data analysis, smooth curve fitting, free knot
regression splines, local polynomial smoothing.

1 Introduction

With the advent of devices that provide (2D or) 3D images and measures, the problem
of curve fitting in more than one dimension is progressively becoming of interest. As
in the simpler 1D case, this problem requires special care when the curve estimate
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is asked, not only to provide a good smoothing of the data, but also to reflect the
features of the curve represented by its derivatives. In some cases, some of the curve
derivatives, or their functions, are themselves objects of analysis; moreover, estimates
of curve derivatives may be of help for further processing of the data, such as in curve
alignment procedures. See e.g. the many illuminating discussions and examples given
in Ramsay and Silverman (2005).

Our research, in particular, stems from the quest for accurate estimation of cen-
terlines of blood vessels and their curvature functions. We show how to efficiently
estimate these 3D curves and their derivatives (and thus their curvature functions),
starting from discrete and noisy observations of the curves. In particular, we develop
a technique that exploits in a novel setting free knot regression splines. These are
regression splines where the number and position of knots are not fixed in advance,
but chosen in a way to minimize a penalized sum of squared errors criterion; see e.g.
Friedman (1991), Stone, Hansen, Kooperberg, and Truong (1997), Luo and Wahba
(1997), Zhou and Shen (2001), and Mao and Zhao (2003). We show that the proposed
technique has many comparative advantages over a classical regression method, local
polynomial smoothing. First of all, 3D free knot regression splines are more efficient
than local polynomials, in the sense that they are able to attain lower approximation
errors fitting more parsimonious models. Moreover, they better capture the salient
features of the curve, providing better estimates of curve derivatives. Finally, the
proposed technique leads to data dimension reduction, a fundamental issue for highly
dimensional datasets, such as those resulting from image reconstructions.

We illustrate our methodology directly on the applied problem that has motivated
our research. This is described in detail in Section 2. The same regression technique
can be easily applied to other curve fitting problems in 2D and 3D. In Section 3 we
present our dataset and the main features of the statistical model. In Section 4 we
recall the essentials of free knot regression splines for the case of functions with one
dependent variable, and then describe the extension to the 3D case. In Section 5 we
illustrate the results and discuss the properties of the obtained estimates. Section
6 is devoted to an extensive comparison between the proposed technique and local
polynomial smoothing. Some conclusive considerations are drawn in Section 7.

2 Motivating applied problem: aneurysms and AneuRisk

Cerebral aneurysms are lesions of cerebral vessels characterized by a bulge of the vessel
wall. The origin of this pathology is still unclear. Possible explanations discussed in
the medical literature focus on the interactions between biomechanical properties of
artery walls and hemodynamic factors, such as wall shear stress and pressure; the
hemodynamics is in turn strictly dependent on vascular geometry. See e.g. Hoi et al.
(2004), Hassan et al. (2005), Castro, Putman, and Cebral (2006). The study of these
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interactions is the main goal of AneuRisk Project, a scientific endeavor which joins
researchers of different scientific fields, ranging from neurosurgery and neuroradiology
to statistics, numerical analysis and bio-engineering.

This paper, in particular, is devoted to the accurate estimation of vessel centerlines
and their curvature functions. It is well known in fact that vessel curvature, i.e. the
curvature of the vessel centerline, strongly affects the local hemodynamics. See for
instance Caro, Doorly, and Tarnakasky (1996) and Chandran (1993). In general, the
relevance of the curvature of a pipe, on the inner fluid motion, has been extensively
investigated since the pioneering works by Dean. See e.g. Dean (1927a), Dean (1927b),
Smith (1976), Berger, Talbot, and Yao (1983), and Chandran (1993). In particular,
an adimensional index called Dean number has been introduced, as an extension of
Reynolds number, in order to quantify fluid stability in a circularly curved pipe. Let
R be the radius of the pipe section, and let Rcurv be the radius of curvature of the pipe
centerline; moreover, denote by µ the viscosity of the fluid at hand, by ρ its density,
and by U0 its mean velocity. The Dean number is

D =
2 ρU0 R

µ

(
R

Rcurv

)1/2

.

Blood dynamics can be really different for different values of D. This explains why
accurate estimation of the profile of the curvature radius of the arteries (or equiva-
lently, the profile of the curvature curv = 1/Rcurv) is of fundamental importance for
the analysis of hemodynamics, and its possible consequences on aneurysm pathology.

The dataset of AneuRisk Project is based on a set of 3D angiographic images
taken from 65 patients at Niguarda Ca’ Granda Hospital (Milan), suspected to be
affected by cerebral aneurysms. Some of these patients have in fact an aneurysm
on the Internal Carotid Artery (ICA), other patients have an aneurysm downstream
the ICA, in the so-called Willis circle (see Ustun (2005)); finally, a few patients are
healthy. The analyses conducted so far within the AneuRisk Project focus on the ICA,
which is clearly recognizable in each of the 65 angiographies. This artery features a
great curvature variability, not only within different parts of the vessel for the same
patient, but also between different patients. Starting from the 3D array of grey-scaled
pixels generated by the angiography (with lighter pixels showing presence of flowing
blood), the artery lumen, i.e. the volume occupied by flowing blood, is identified
by a reconstruction algorithm coded in the Vascular Modeling ToolKit (VMTK). See
Antiga, Ene-Iordache, and Remuzzi (2003), and Piccinelli et al. (2007). The outcome
of this process yields a set of points in a three dimensional space, that are computed as
the centers of maximal spheres inscribed in the artery lumen. This set of points defines
the vessel centerline. Moreover, the reconstruction algorithm provides the radius of
lumen sections, computed as the radius of maximal inscribed spheres. Figure 1 shows
the draw of the reconstruction of an ICA with its centerline (patient 1). Due to
measurement and reconstruction errors, reconstructed centerlines may be quite wiggly
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Figure 1: 3D image of an internal carotid artery with an aneurysm [patient 1].

and thus need to be smoothed, and so do the estimates of their derivatives, in order
to obtain sensible estimates of their curvature functions. Sangalli, Secchi, Vantini,
and Veneziani (2008b) obtained smooth pointwise estimates of vessel centerlines by
means of local polynomials, and carried out exploratory analyses of vessel curvature
and radius profiles which supported the existence of a strong relationship between
vessel geometry and aneurysm location. Using the more accurate estimates described
in the present paper, which are based on free knot spline regression, we can confirm
this conclusion. See Sangalli, Secchi, and Vantini (2008a). This regression technique
has also the advantage of providing to the Project highly accurate estimates of each
individual ICA centerline and curvature function. These will be used in the study
of the corresponding reconstructed ICA geometry, in order to efficiently evaluate the
role of vessel curvature on the hemodynamics.

3 Data and model

For every patient i in our dataset (i = 1, . . . , 65), VMTK reconstruction of ICA
centerline is a set of points in R3, {(xij , yij , zij) : j = 1, 2, . . . , ni}, where x, y and z

denote the three space coordinates of each point. Points are ordered moving downward
along the ICA, from the point closest to its terminal bifurcation (detected by VMTK)
towards the proximal districts, i.e. aorta and heart. The reason for this choice is that
the terminal bifurcation of the ICA is present in each angiography, even if the portion
of ICA captured by the angiography varies from patient to patient (depending on
where the angiographic image has been centered). For each patient i, we associate the
set of space coordinates with an index set {sij : j = 1, 2, . . . , ni}, which measures an
approximate distance along the ICA. More precisely, −si1 is the distance of the point
(xi1, yi1, zi1) from the terminal bifurcation of the ICA (as determined by VMTK), and

sij − sij−1 = −
√

(xij − xij−1)2 + (yij − yij−1)2 + (zij − zij−1)2 , for j = 2, . . . , ni.
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Figure 2: Reconstructed space coordinates of ICA centerline for patient 1, (x1j , y1j , z1j), versus the abscissa

parameter s1j , for j = 1, . . . , n1 (n1 = 1350).

The conventional negative sign highlights that we are moving upstream, i.e. in opposite
direction with respect to blood flow. Figure 2, for instance, displays the reconstructed
space coordinates of ICA centerline for patient 1, (x1j , y1j , z1j), versus the abscissa
parameter s1j , for j = 1, . . . , n1 (n1 = 1350). The number ni of data points available
for each patient ranges from 350 to 1380, and is almost perfectly correlated to the
approximate length |si ni − si 1| of the reconstructed centerlines (correlation coeffi-
cient=0.999), which in turn varies from 27.219mm to 110.136mm. In other words, the
grid density of the 65 reconstructions is the same, even if the 65 grids are different.
The average step of these grids is 0.079mm.

Our task is to estimate, for each patient i, the true ICA centerline ci(s) =
(xi(s), yi(s), zi(s)) and its curvature function, starting from the noisy reconstruction
{(xij , yij , zij) : j = 1, 2, . . . , ni}. For each patient i we carry out an independent
estimation process (from now on we drop the subscript i), considering the statistical
model

(xj , yj , zj) = c(sj) + ej , j = 1, . . . , n ;

ej = (e[x]
j , e

[y]
j , e

[z]
j ) , with ej and ej′ independent for j 6= j′,

E(ej) = 0 , V ar(ej) = σ2I .

(1)

This model generalises to the 3D case the models considered for 1D curve fitting
problems; see e.g. Zhou and Shen (2001), who present the methodology that we extend
here to the multidimensional case, or Zhang (2003), who considers various smoothing
methods. The value of σ2, in the variance matrix of the error term, is unknown,
but assumed to be the same for each patient i, for i = 1, . . . , 65. This assumption
is justified by the fact that both the machine used to take the 3D-angiographies and
the reconstruction algorithm are the same for each patient. Denoting by × the vector
product, the curvature of c(s) = (x(s), y(s), z(s)) is defined by

curvc(s) =
|c′(s)× c′′(s)|

|c′(s)|3 =
√(

x′(s)y′′(s)−x′′(s)y′(s)
)2+

(
y′(s)z′′(s)−y′′(s)z′(s)

)2+
(
z′(s)x′′(s)−z′′(s)x′(s)

)2

(
(x′(s))2 + (y′(s))2 + (z′(s))2

)3/2
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Figure 3: First and second differences (top and bottom, respectively) of reconstructed space coordinates

of ICA centerline for patient 1.

where c′(s) = (x′(s), y′(s), z′(s)) and c′′(s) = (x′′(s), y′′(s), z′′(s)) are the first and
second derivatives of c. Rough pointwise estimates of first derivatives are given by
the first central differences

Dx(sj) =
xj+1 − xj−1

sj+1 − sj−1
, Dy(sj) =

yj+1 − yj−1

sj+1 − sj−1
, Dz(sj) =

zj+1 − zj−1

sj+1 − sj−1
,

for j = 2, . . . , n− 1; the second central differences

D2x(sj)=2
xj+1−xj

sj+1−sj
− xj−xj−1

sj−sj−1

sj+1 − sj−1
, D2y(sj)=2

yj+1−yj

sj+1−sj
− yj−yj−1

sj−sj−1

sj+1 − sj−1
,

D2z(sj)=2
zj+1−zj

sj+1−sj
− zj−zj−1

sj−sj−1

sj+1 − sj−1

are instead too noisy to be of any use. See for instance Figure 3, which displays first
and second central differences of reconstructed space coordinates of ICA centerline for
patient 1.

We propose a regression technique, for the estimation of the true centerline c, based
on free knot regression splines, i.e. regression splines where the number and position
of knots are not fixed in advance, but chosen in a way to minimize a penalized sum
of squared errors criterion. Since our data are 3D, the idea is to fit simultaneously
the three space coordinates of the centerline

(
x(s), y(s), z(s)

)
, looking for the optimal

spline knots along the abscissa parameter s. Estimates of c′ and c′′, and hence of
curvc, are thus obtained by differentiation of the fitted regression spline.

6



4 3D free knot regression splines

Consider an interval [a, b], split into subintervals by knots k1, . . . , knk
(with a < k1 <

. . . < knk
< b). Assume, for the moment, that the number and position of knots

are given. An order-m spline over [a, b], with knot vector k = (k1, . . . , knk
), is a

piecewise-polynomial of degree m − 1, with continuous derivatives of order m − 2 at
the knots. The set of all order-m splines over [a, b], with knot vector k, forms a vector
space. The dimension of such space is m + nk. This is given by the balance between
the number of parameters needed to identify (nk + 1) polynomials of order m (one
polynomial over each of the subintervals), and the continuity constraints, prescribing
m − 1 equations at each of the nk knots: m(nk + 1) − nk(m − 1) = m + nk. A
computationally convenient basis system for this space is the b-spline basis system
{b[k]

r,m(s) : r = 1, . . . , m + nk}. Any order-m spline over [a, b] with knot vector k can
thus be represented by the expansion f(s) =

∑m+nk
r=1 λrb

[k]
r,m(s), for some coefficient

vector λ =
(
λ1, . . . , λm+nk

)T . See de Boor (1978) for a systematic introduction to
splines. Note that derivatives of splines are still splines (of appropriate order), with the
same knot vector and coefficients directly computed from the coefficients of the original
spline. In particular, with the b-spline basis system, denoting by v the (2m + nk)-
vector with entries

v1 = . . . = vm = a, vm+j = kj for j = 1, . . . , nk, vm+1+nk
= . . . = v2m+nk

= b,

the first and second derivatives of f(s) are given by f ′(s) =
∑m−1+nk

r=1 λ
[1]
r b

[k]
r,m−1(s)

and f ′′(s) =
∑m−2+nk

r=1 λ
[2]
r b

[k]
r,m−2(s), where

λ[1]
r =

λr+1 − λr

vm+r − vr+1
, for r = 1, . . . , m− 1 + nk,

and

λ[2]
r =

λ
[1]
r+1 − λ

[1]
r

vm+r − vr+2
, for r = 1, . . . , m− 2 + nk,

for m ≥ 2 and m ≥ 3 respectively.
Now consider the problem of estimating the function f : R→ R in the model

wj = f(sj) + ej , j = 1, . . . , n, with ej and ej′ independent for j 6= j′,

E(ej) = 0, V ar(ej) = σ2,

by means of an order-m spline with knot vector k. The regression spline is the spline

f̂(s) =
m+nk∑

r=1

λ̂rb
[k]
r,m(s)

where λ̂ =
(
λ̂1, . . . , λ̂m+nk

)T minimizes the sum of squared errors:

SSE(λ) =
n∑

j=1

(
wj −

m+nk∑

r=1

λrb
[k]
r,m(sj)

)2
. (2)
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In matrix notation, writing {B[k]
m }j,r = b

[k]
r,m(sj), w = (w1, . . . , wn)T and ŵ = (f̂(s1), . . . ,

f̂(sn))T ,

SSE(λ) = (w −B[k]
m λ)T (w −B[k]

m λ) ,

λ̂ =
(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
w ,

ŵ = B[k]
m

(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
w = H w ,

where H = B
[k]
m

(
B

[k]
m

T
B

[k]
m

)−1
B

[k]
m

T
is an orthogonal projection matrix, with tr(H) =

m + nk. Thus, ŵ is obtained as orthogonal projection of w on the space generated
by the vectors of basis evaluations

(
b
[k]
r,m(s1), . . . , b

[k]
r,m(sn)

)T , for r = 1, . . . ,m + nk.
The order of the spline is usually chosen according to the problem at hand and

the scope of the analysis. Commonly used splines are of order 4, corresponding to
piecewise cubic polynomials. They provide a smooth estimate of the function f , for
which knot-discontinuity is not visible to human eye, as it is often claimed. Moreover,
order-4 splines also provide smooth estimates of the first derivative of f . When higher
order derivatives are also of interest, it is usually convenient to use order p + 3 (or at
least p + 2) splines, where p is the highest derivative order that has to be estimated.

To improve spline estimation, number and position of knots can be selected by
minimizing a suitable error functional, which takes into account the dimension of the
model being fitted. A possible model selector, in this case, is provided by the so-called
Stein’s unbiased risk estimate (see Stein (1981))

pSSE(λ,k) =
n∑

j=1

(
wj −

m+nk∑

r=1

λrb
[k]
r,m(sj)

)2 + Cσ̂2(m + nk)

= (w −B[k]
m λ)T (w −B[k]

m λ) + Cσ̂2(m + nk)

(3)

where C is a penalization constant, and σ̂2 is an estimate of error variance. Regression
splines where the number and position of knots are not fixed in advance, but chosen
by a data-driven criterion such as (3), are called free knot regression splines. Note
that, once the optimal knot vector k̂ has been selected, and thus the model has been
chosen, the vector of fitted values ŵ is again obtained as orthogonal projection of w on
the space generated by the vectors of basis evaluations, according to ŵ = H w, where
H = B

[k̂]
m

(
B

[k̂]T

m B
[k̂]
m

)−1
B

[k̂]T

m . Algorithms for the search of the optimal knot vector,
for the regression technique described above or other free knot spline procedures, have
been proposed e.g. by Friedman (1991), Stone et al. (1997), Luo and Wahba (1997),
and more recently by Zhou and Shen (2001), and Mao and Zhao (2003). In particular,
the algorithm developed by Zhou and Shen (2001), by including knot relocation moves,
strongly improved the previous stepwise forward/backward knot selection procedures,
which suffered from knot confounding problems. The choice of the smoothness pa-
rameter C, in the model selector (3), is of paramount importance. High values of C

yield more parsimonious models, i.e. splines with fewer knots, but with higher sum
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of squared errors, and vice versa. Several researchers suggest particular values of the
smoothness parameter in the model selector they are using. For example, Zhou and
Shen (2001) note that C = 2 in (3) works well in simulations with some smooth and
nonsmooth functions; Friedman (1991) finds that an effective value of the smoothness
parameter in his MARS is 3; Luo and Wahba (1997) instead set it equal to 1.2 for
their Hybrid Adaptive Splines. In practice, the choice of the smoothness parameter is
made according to qualitative considerations, along a “Goldilocks approach” where the
smoothness parameter is selected in order to neither under-smooth nor over-smooth
the data, but lead to a “just right” degree of smoothness for the data under analysis.

4.1 Extension to the 3D case

Let us now come to the 3D problem described by model (1). The idea is to estimate
the true centerline c(s) by simultaneously fitting the three coordinate functions, x(s),
y(s) and z(s), with three order-m splines having the same knot vector k̂, with knots
chosen along the abscissa parameter s:

x̂(s) =
m+nk̂∑

r=1

λ̂[x]
r b[k̂]

r,m(s), ŷ(s) =
m+nk̂∑

r=1

λ̂[y]
r b[k̂]

r,m(s), ẑ(s) =
m+nk̂∑

r=1

λ̂[z]
r b[k̂]

r,m(s).

As before, denote by B
[k]
m the (n × (m + nk))-matrix of basis evaluations. More-

over, denote by W the (n × 3)-matrix of observed values, W =
[
x
∣∣y∣∣z], where x =

(x1, . . . , xn)T , y = (y1, . . . , yn)T , z = (z1, . . . , zn)T , and by Ŵ the analogous matrix
of fitted values Ŵ =

[
x̂
∣∣ŷ∣∣ẑ], where x̂ =

(
x̂(s1), . . . , x̂(sn)

)T , ŷ =
(
ŷ(s1), . . . , ŷ(sn)

)T ,
ẑ =

(
ẑ(s1), . . . , ẑ(sn)

)T . Finally, denote by Λ the ((m + nk) × 3)-matrix of λ coef-
ficients Λ =

[
λ[x]

∣∣λ[y]
∣∣λ[z]

]
. For a fixed knot vector k, the natural generalization of

least squared errors criterion (2), for the 3D model (1), is given by

SSE3D(Λ) = tr
[
(W −B[k]

m Λ)(W −B[k]
m Λ)T

]

=
n∑

j=1

(
xj −

m+nk∑

r=1

λ[x]
r b[k]

r,m(sj)
)2 +

n∑

j=1

(
yj −

m+nk∑

r=1

λ[y]
r b[k]

r,m(sj)
)2

+
n∑

j=1

(
zj −

m+nk∑

r=1

λ[z]
r b[k]

r,m(sj)
)2

,

which leads to the least squared estimate Ŵ = B
[k]
m Λ̂, where

Λ̂ =
(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
W
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Thus, for the search of the optimal (Λ̂, k̂), we will use the following model selector:

pSSE3D(Λ,k)

= tr
[
(W −B[k]

m Λ)(W −B[k]
m Λ)T

]
+ C(m + nk)

=
n∑

j=1

(
xj −

m+nk∑

r=1

λ[x]
r b[k]

r,m(sj)
)2 +

n∑

j=1

(
yj −

m+nk∑

r=1

λ[y]
r b[k]

r,m(sj)
)2

+
n∑

j=1

(
zj −

m+nk∑

r=1

λ[z]
r b[k]

r,m(sj)
)2 + C(m + nk) .

(4)

Note that the penalization term in (4) does not explicitly take into account error
variance, as was instead the case in (3). Hence, the penalization constant C in (4)
cannot be directly compared with the penalization constant C in (3). This is related to
the specific problem we deal with. Recall that the value of σ in the variance structure
of the error term is assumed to be the same for each patient. Since we are here mainly
interested in equally smoothing the ICA centerlines of the 65 patients, we will simply
focus on choosing the best value of C for the overall dataset, without bothering with
finding a sensible a priori estimate of σ. We discuss the choice of the penalization
constant C in Section 5.1.

It should also be noted that, as in the 1D case, the matrix of fitted values Ŵ is
obtained as orthogonal projection of the columns of the matrix of observed values W

on the space generated by the vectors of basis evaluations
(
b
[k̂]
r,m(s1), . . . , b

[k̂]
r,m(sn)

)T ,
for r = 1 . . . , m + nk̂,

Ŵ = B[k̂]
m

(
B[k̂]

m

T
B[k̂]

m

)−1
B[k̂]

m

T
W = H W.

In particular, the 3D spline estimator, like the 1D spline estimator, is a so-called linear
estimator, i.e. there exists a linear operator S, independent of W , such that the fitted
values Ŵ are obtained according to Ŵ = S W . For these estimators it is common to
take the trace of the linear operator S, or alternatively tr(ST S) or tr(2S − ST S), as
Degrees of Freedom (DF) of the model. See e.g. Buja, Hastie, and Tibshirani (1989)
and Hastie and Tibshirani (1990), who first introduced this notion. As commented in
Ramsay and Silverman (2005), using the DF provides a uniform approach to compare
different smoothing methods. We will thus consider, as DF of the spline estimator, the
trace of the orthogonal projection matrix H, i.e. m + nk̂ (note that when the linear
operator is an orthogonal projection matrix, as in this case, the three alternative
definitions of DF coincide).

If the three coordinates in the error term were assumed to be correlated, and thus
V ar(ej) = σ2I in (1) was changed in V ar(ej) = Σ, for some symmetric positive-
definite matrix Σ, then the natural generalization of least squared errors criterion (2)
would become

SSE3D(Λ) = tr
[
(W −B[k]

m Λ)Σ−1(W −B[k]
m Λ)T

]
. (5)
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It is easy to show that

argmin(Λ)

{
tr

[
(W −B[k]

m Λ)Σ−1(W −B[k]
m Λ)T

]}

= argmin(Λ)

{
tr

[
(W −B[k]

m Λ)(W −B[k]
m Λ)T

]}

=
(
B[k]

m

T
B[k]

m

)−1
B[k]

m

T
W

so that the least square estimate Ŵ = B
[k]
m Λ̂ does not depend on Σ. Thus, also in this

more general case we could use the model selector (4). It turns out that the solution
Λ̂ =

(
B

[k]T

m B
[k]
m

)−1
B

[k]T

m W , not only minimizes (5), for any symmetric positive-definite
matrix Σ, but also minimizes the general variance

∣∣(W −B
[k]
m Λ)(W −B

[k]
m Λ)T

∣∣, where
| · | denotes the determinant.

4.2 Algorithm for the search of optimal knots

For the search of the optimal knot vector we modified Zhou and Shen (2001) algo-
rithm, in order to deal with our 3D problem. For computational convenience, we look
for optimal knots among the grid values s1, . . . , sn. This is not a limitation, since, as
noted in Section 3, the grids are very fine. We start with a set of initial knots which
are evenly spaced along the grid. A more accurate selection of initial knots, along the
lines of Zhou and Shen (2001), would speed up the algorithm, but is not necessary, as
pointed out by the same authors. The algorithm then alternates between the following
two steps.

Knot addition. Let k = (k1, . . . , knk
) be the current knot vector, and Λ the cor-

responding estimate of the coefficient matrix. Set k0 = a and knk+1 = b. If k is
the initial knot vector, then each of the subintervals [kr, kr+1], for r = 0, . . . , nk, is
checked for possible addition of one knot. Specifically, in each of the subintervals
[kr, kr+1], the knot sj , with kr < sj < kr+1, is added to the current knot vector,
leading to the new knot vector k∗j and to the new estimate of the coefficient matrix

Λ∗j =
(
B

[k∗j ]T

m B
[k∗j ]
m

)−1
B

[k∗j ]T

m W , if

pSSE3D(Λ∗j ,k
∗
j ) < pSSE3D(Λ,k) and

sj = argmin{sl:kr<sl<kr+1}pSSE3D(Λ∗l ,k
∗
l ).

If k is not the initial knot vector, then the subinterval [kr, kr+1] is checked for possible
addition of one knot only if at least one among the neighbor knots, kr−2, kr−1, . . . ,

kr+3, has been added in the previous iteration.

Knot relocation/deletion. Let k = (k1, . . . , knk
) be the current knot vector. For

r = 1, . . . , nk, if kr is adjacent to a knot added in the preceding step, then it is
checked for possible relocation/deletion. In particular, kr is removed from the the
current knot vector, or moved to the new position sj , with kr−1 < sj < kr+1, if this
improves the criterion (4), likewise in the knot addition move. The same procedure is

11



then applied to all knots that have been added in the preceding step.

When, for the first time, the knot addition move does not yield any new knot, all knots
are searched for deletion/relocation. The resulting knot vector is set as new initial knot
vector, and the algorithm is run again. When, for the second time, the knot addition
move does not yield any new knot, all knots are searched for deletion/relocation, and
the procedure ends.

The algorithm for the search of optimal knots, and all other data processing, have
been coded in R (see R Development Core Team 2007).

5 Results

The 65 centerlines are estimated by means of 3D free knot regression splines of order
m = 5, with penalization constant C = 4. The choice of the penalization constant is
discussed in Section 5.1. The order of the splines has been chosen to obtain smooth
estimates of the first two derivatives. In the future, the torsion of the centerline may
also be an object of study. In fact, the hemodynamics is influenced not only by vessel
radius and curvature, but also by its torsion, although in a more complex and still
unclear way. The torsion depends on the first three derivatives, and thus an order-6
spline would be recommended for its analysis. However, using splines of order m = 5,
the third derivative is a piecewise linear continuous line, so that order-5 splines are
enough for a continuous estimate of the torsion.

The top line of Figure 4 shows the estimates, x̂(s), ŷ(s), ẑ(s), of the three coordi-
nate functions of ICA centerline for patient 1, obtained by order-5 free knot regression
splines with C = 4. The vertical lines show the position of the knots along the abscissa
parameter s. The estimates are superimposed to the original (sj , xj), (sj , yj), (sj , zj)
(grey dots, almost completely hidden by the estimates). Center and bottom lines of
the same figure show first and second derivatives of x̂(s), ŷ(s) and ẑ(s), superim-
posed to the rough estimates given respectively by first and second central differences
(grey). Figure 5 is a 3D image of the fitted centerline, ĉ(s), and Figure 6 shows the
corresponding curvature function.

It is of particular interest to identify the points of approximately zero curvature.
In fact, these points can be taken as delimiters of artery bends or siphons, whose
identification is important for the morphological analysis of the ICA. Preliminary
investigations of the location of the aneurysms in the different bends, and of the
position inside each specific bend, yielded interesting results relevant to the set up
of prognostic indexes. See Piccinelli et al. (2007) and Sangalli et al. (2008b). We
take as points of approximately zero curvature all points of local minimum for the
curvature, with curvature smaller than the threshold 0.0145mm−1, or equivalently
with radius of curvature greater than 1/(0.0145mm−1)=68.966mm, where 68.966mm
is the mean length of reconstructed centerlines. Indeed, consider an arc of length l on
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Figure 4: Top: fitted coordinates curves x̂(s), ŷ(s), ẑ(s), with vertical lines showing the position of the

knots along the abscissa parameter s, superimposed to the original (sj , xj), (sj , yj), (sj , zj) in grey [patient

1]. Center: first derivatives of x̂(s), ŷ(s) and ẑ(s), superimposed to first central differences in grey. Bottom:

second derivatives of x̂(s), ŷ(s) and ẑ(s).

a circumference of radius R. The arc is a curve with constant curvature equal to 1/R;
the corresponding chord is an approximating curve with constant zero curvature, i.e.
a straight line. The ratio between the length of the chord and the length of the arc
is equal to 2R

l sin( l
2R): this ratio is greater than 0.95 when R > l. Hence for a curve

belonging to a population of curves with mean length equal to l̄, we propose to locally
approximate the curve with a straight line in a neighborhood of a point of minimal
curvature, if the radius of curvature R in the point is greater than l̄. Figures 5 and 6
show the points of approximately zero curvature of the ICA centerline for patient 1.
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Figure 5: Fitted centerline (the little bullets show

the positions of the spline knots), together with

rough data [patient 1]. The big squares are points

of approximately zero curvature.
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Figure 6: Curvature of ĉ(s) [patient 1]. The hor-

izontal dashed line is the approximately zero curva-

ture threshold.
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Figure 7: Top: estimates of x′ obtained by free

knot splines with C = 4 (solid) and C = 9 (dashed).

Bottom: estimates of z′ obtained by free knot splines

with C = 4 (solid) and C = 0.2 (dashed) [patient 1].
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Figure 8: Estimated functions of centerline cur-

vature [patient 1], obtained by free knot regression

splines with C = 3, 4, 5 (dotted, solid and dashed).
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5.1 Choice of penalization constant

As goodness-of-fit measure for the curve estimate, we use the Average Squared Error
(ASE):

ASE =
1
n

[
n∑

j=1

(
xj − x̂(sj)

)2 +
n∑

j=1

(
yj − ŷ(sj)

)2 +
n∑

j=1

(
zj − ẑ(sj)

)2

]
.

Moreover, since we want to evaluate how well the curve estimate reflects the features
of the curve represented by its derivatives, we also consider the Average Squared Error
on first derivatives (ASEder) with respect to the rough estimates given by first central
differences:

ASEder =

=
1
n

[
n∑

j=1

(
Dx(sj)− x̂′(sj)

)2 +
n∑

j=1

(
Dy(sj)− ŷ′(sj)

)2 +
n∑

j=1

(
Dz(sj)− ẑ′(sj)

)2

]
.

The average squared error on second derivatives is uninformative, since the second
central differences are too noisy. Thus, we will use ASEder as a proxy measure of
goodness-of-fit for derivatives in general.

The left panel of Figure 9 displays boxplots of the distribution of ASE, ASEder
and also DF for the fits corresponding to the 65 patients, obtained by free knot regres-
sion splines with 5 different penalizations: C = 0.2, 3, 4, 5, 9. When the penalization
increases, the ASE and ASEder increase while the DF decrease. This tradeoff between
average squared errors and DF translates the classical bias/variance tradeoff.

The value of C is chosen in order to neither under-smooth nor over-smooth the data,
but provide a “just right” degree of smoothness. In particular, we set C = 4: with
this choice of the penalization constant, free knot regression splines can accurately
estimate the salient features of the centerlines, without being too data-adapted. This
can be better appreciated looking at spline estimates of first derivatives and comparing
them with central difference estimates. Very high values of C can lead to centerlines
estimates that cannot fully capture the peaks and troughs in the first (and thus
subsequent) derivatives. See for example the top of Figure 7, which compares the
estimates of x′ obtained with C = 4 and C = 9, for patient 1 carotid centerline. Very
low values of C may instead yield estimates where also the high frequency variation
is fitted. See for example the bottom of Figure 7, which compares the estimates of
z′ obtained with C = 4 and C = 0.2, also for patient 1. These two opposite mistakes
must be avoided to get sensible estimates of curvature profiles.

On the other hand, it is important to notice that the estimate of the curvature is
stable with respect to variations of C over a reasonable span. Figure 8, for instance,
compares the estimates of centerline curvature functions for the ICA of patient 1,
obtained with C = 3, 4, 5. In particular, the points of (approximately) zero curvature,
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Figure 9: Left: boxplots of the distribution of ASE, ASEder, and DF for the fits corresponding to the 65

patients, obtained by free knot regression splines with penalizations C = 0.2, 3, 4, 5, 9. Right: the same for the

fits obtained by local polynomial smoothing with bandwidth bw = 2, 3, 3.25, 3.5, 4.

whose importance has been previously mentioned, do not change. To show the ro-
bustness of the estimation of zero-curvature points, with respect to the choice of the
penalization constant in a reasonable span, we compare the results corresponding to
the three different penalization C = 3, 4, 5. For 28 out of the 65 patients, no zero-
curvature point is found, in the three different estimates corresponding to C = 3, 4, 5.
For these patients just a portion of the first siphon is observed. For only 9 out of
the 65 patients, the number of zero-curvature points is not the same in each of the
three estimates: depending on the penalization, 0 points or 1 point are found, so
that the three different estimates identify one full siphon, or just a portion of it. For
the remaining 28 patients, each of the three estimates find the same number of zero-
curvature points, either 1, or 2 or 3 depending on the patient, for a total of 34 points.
Moreover we point out that not only the number of points found by the three different
estimates are the same, but also their positions along the abscissa parameter are not
statistically different. To show this fact we perform a principal component analysis
of the matrix U =

[
u1|u2|u3

]
that has as columns the vectors ug = (u1g, . . . , u34g)T ,
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for g = 1, 2, 3, with the abscissae of the 34 zero-curvature points, respectively in the
three different estimates corresponding to C = 3, 4, 5 (points are ordered according to
patient and, when more than 1 point is present per patient, according to the position
of the point along the abscissa parameter s). The rows of U thus give the abscissae of
corresponding zero-curvature points in the three different estimates. The first princi-
pal component of U is equal to 1√

3
(1, 1, 1), up to the 3rd decimal digit, and the three

eigenvalues are respectively 1487.539, 0.187, 0.021. We thus verify that, jointly, the
second and third eigenvalue are not significantly different from (0, 0). The p-value
of the approximate chi-squared test is 0.20. This supports the assumption that the
positions of the 34 zero-curvature points are essentially the same in the three different
estimates.

6 Comparison with local polynomial smoothing

In this section we compare free knot spline regression with a more classical competitor,
namely local polynomial smoothing. The latter technique was formerly used in San-
galli et al. (2008b), where pointwise estimates of true centerlines were obtained fitting
order-5 polynomials with a Gaussian kernel and bandwidth equal to 3. Estimates of
derivatives, and hence of curvatures, were thus obtained by pointwise differentiation
of the fitted local polynomials.

Likewise free knot regression splines, also local polynomials are a linear estima-
tor. Let m be the order of the polynomials, bw the bandwidth, and K(·) the kernel.
Moreover, denote by K1/2(s∗) the (n×n)-diagonal matrix having j-th entry equal to(K(

(s∗ − sj)/bw
)
/bw

)1/2, and set

S(s∗) =




1 (s1 − s∗) · · · (s1 − s∗)m−1

...
...

1 (sn − s∗) · · · (sn − s∗)m−1




Then the pointwise centerline estimate at s∗, given by local polynomials, is

(x̂∗, ŷ∗, ẑ∗) = eT
1,mΨ̂(s∗) (6)

where er,m represent the r-th column of an (m×m) identity matrix, and the (m×3)-
matrix Ψ̂(s∗) is given by

Ψ̂(s∗) = argmin(Ψ)

{
tr

[
K1/2(s∗)T (W − S(s∗)Ψ)(W − S(s∗)Ψ)T K1/2(s∗)

]}

=
[
S(s∗)T K1/2(s∗)K1/2(s∗)S(s∗)

]−1
S(s∗)T K1/2(s∗)K1/2(s∗)W

where W is the matrix of observed values. Using this expression for Ψ̂(s∗), it is
possible to rewrite (6) as

(x̂∗, ŷ∗, ẑ∗) =
n∑

j=1

T
(
s∗,

sj − s∗

bw

)
(xj , yj , zj)
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where

T (u, v) = eT
1,m

[
S(u)T K1/2(u)K1/2(u)S(u)

]−1
diag{1, v, . . . , vm−1}K(v)/bw

and diag{·} denotes a diagonal matrix. It follows that Ŵ = LW , where the (i, j)-th
entry of the linear operator L, mapping the observed values into the fitted values, is
given by

L(i, j) = T
(
si,

sj − si

bw

)
.

To compute the trace of the smoothing matrix L, i.e. the DF of the local polynomial
estimator, we use the empirical formula provided by Zhang (2003):

tr(L) = m +
n

n− 1
K0

|sn − s1|
bw

where
K0 = K(0) eT

1,m M−1 e1,m

and the (m ×m)-matrix M has (i, j)-th entry given by M(i, j) = µi+j−2, with µd =∫
tdK(t)dt.
If the three coordinates in the error term in model (1) were assumed to be corre-

lated, then it would be natural to look for the value of Ψ(s∗) which minimises

tr
[
K1/2(s∗)T (W − S(s∗)Ψ)Σ−1(W − S(s∗)Ψ)T K1/2(s∗)

]

where Σ is the correlation matrix of the error term. It is easy to see that

argmin(Ψ)

{
tr

[
K1/2(s∗)T (W − S(s∗)Ψ)Σ−1(W − S(s∗)Ψ)T K1/2(s∗)

]}

= argmin(Ψ)

{
tr

[
K1/2(s∗)T (W − S(s∗)Ψ)(W − S(s∗)Ψ)T K1/2(s∗)

]}

so that the local least square estimate eT
1,mΨ̂(s∗), like the free knot regression spline

estimate, does not depend on Σ.
We now want to argue that, at the cost of an affordable increase in computational

cost, estimation by free knot regression splines has many comparative advantages over
local polynomial smoothing. To show some of these advantages, we first of all consider
jointly the measures ASE, ASEder and DF. Figure 9 compares the boxplots of the
distribution of ASE, ASEder, and DF, for the fits corresponding to the 65 patients,
obtained with the two different techniques. Various values of C for spline estimates
and bw for local polynomial estimates are considered, covering a wide range of ASE,
ASEder and DF. Inspection of the boxplots shows immediately that is not possible
to find couples of values (C, bw) that are equivalent in terms of the criteria ASE,
ASEder and DF. For example, a value of C and a value of bw that are comparable in
terms of ASE of the corresponding estimates, turn out to be not comparable in terms
of ASEder nor in terms of DF. The non-existence of a map that converts the values of
C for free knot regression splines in equivalent values of bw for local polynomials, or
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in other words the non-equivalency of the two regression techniques with respect to
the criteria ASE, ASEder and DF, gives us the opportunity to highlight some of the
gains obtained by using free knot regression splines. In particular, it gives evidence
of the higher efficiency and higher accuracy of free knot regression splines.

Efficiency. Smoothing by free knot regression splines is more efficient than smooth-
ing by local polynomials, in the sense that the former technique attains lower ASE,
and lower ASEder, using less DF. In fact, there is no value of the bandwidth for which
local polynomials can beat free knot regression splines on both ASE and DF (or on
both ASEder and DF); whereas for any value of bw it is always possible to find a full
range of values of C for which splines estimates do better than local polynomials with
respect to all three criteria: ASE, ASEder and DF. See Figure 9.

Accuracy. Free knot regression splines can better estimate the salient features of
the curves, expressed by its first derivatives. Indeed, if spline estimates and local
polynomial estimates are allowed similar data-adaptation, i.e. similar ASE, then the
former provide better estimates of the curve derivatives, i.e. have lower ASEder;
compare for instance splines with C = 5 and local polynomials with bw = 3.5, in
Figure 9. Even with a higher ASE, splines can attain a lower ASEder; see e.g. splines
with C = 4 and local polynomials with bw = 3.25. This means that spline estimates
can simultaneously be more accurate and less data adapted. Note that the spline
estimates with C = 4 are less data adapted than the local polynomial estimates with
bw = 3, used in Sangalli et al. (2008b), having higher ASE (and of course less DF);
but, nonetheless, they reach the same level of accuracy, having comparable ASEder.
Spline estimates have higher accuracy thanks to their local adaptivity, which allows
them to better detect sharp peaks and troughs in the first and second derivatives.
Figure 10, for example, compares estimates of x′(s) for patient 1 obtained by free
knot regression splines with C = 4 (ASE=0.0115, ASEder=0.0161, and DF=20), and
by local polynomials with bw = 3 (ASE=0.0056, ASEder=0.0159, and DF=32.28) and
bw = 3.5 (ASE=0.0087, ASEder=0.0183, and DF=28.38). Even if in this comparison
the two local polynomial estimates have been advantaged by allowing them a higher
data-adaptation, the spline estimate can better get the peaks and troughs in the first
derivative, being otherwise smooth, whereas the two local polynomial estimates cannot
fully capture these features. Also in subsequent derivatives, spline estimates exhibit
more clear-cut peaks and troughs, being otherwise smooth, whereas local polynomial
estimates show flatter local features, but are more wiggly over the whole range. Note
that the ability of free knot regression splines of better detecting salient local features is
particularly important in our problem, where a big interest lies in curvature landmarks
such as peaks and zeros, and their possible influences on hemodynamics. It should
be mentioned that this advantage of free knot regression splines over other smoothing
methods has been also evidenced by Gervini (2006), who carried out comparative
simulation studies of free knot regression splines versus smoothing splines.
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Figure 10: Estimates of x′ obtained by free knot regression splines with C=4 (solid), and by local polyno-

mial smoothing with bw=3, 3.5 (dashed lines), superimposed to first central differences (grey) [patient 1].

Data dimension reduction and computational advantages. Other important gains
obtained by using free knot regression splines are related to their functional nature. In
particular, free knot regression splines naturally yield a dimension reduction of data,
which is a fundamental issue for our highly dimensional dataset. Moreover, the closed
functional form of their estimates can be exploited in subsequent analyses of the fitted
curves, avoiding reiterated numerical approximations.

Sangalli et al. (2008b) obtained smooth pointwise estimates of vessel centerlines by
means of local polynomials, and carried out exploratory analyses of vessel curvature
and radius profiles which supported the existence of a strong relationship between
vessel geometry and aneurysm location. In particular, a Functional Principal Compo-
nent Analysis was used to identify the main uncorrelated modes of variability of the
distribution of ICA curvature and radius profiles for the 65 patients, then a Quadratic
Discriminant Analysis was carried out on the principal component scores, evidencing
the existence of significant differences on the distribution of these two geometric fea-
tures for patients having an aneurysm along the ICA and patients having an aneurysm
downstream its terminal bifurcation. Note that local polynomial estimates were accu-
rate enough to give good estimates of the first functional principal components of the
curvature, and the conclusion reached in this exploratory study has been confirmed
in Sangalli et al. (2008a) using centerline estimates obtained by free knot spline re-
gression. The latter technique has now also made available highly accurate estimates
of each individual ICA centerline and curvature function. It will be thus possible to
use these estimates in the study of individual ICA geometries, in order to efficiently
evaluate the role of vessel curvature on the hemodynamics, one of the main goals of
AneuRisk Project.
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7 Discussion

In this paper we have shown how to efficiently estimate a 3D curve and its derivatives
by means of free knot regression splines. We have shown that the estimates obtained
are more efficient than the estimates based on local polynomials, and that they can
better estimate the local salient features of the curve. Very recently, Gluhovsky and
Gluhovsky (2007) proposed a method to choose location-dependent bandwidths in
local polynomials. A location-dependent bandwidth may also limit the drawbacks of
local polynomials experienced in our 3D problem. An extension to the 3D case of the
complex technique proposed by the two authors goes beyond the scope of the present
paper. In the same paper, Gluhovsky and Gluhovsky express perplexities about the
possibility of obtaining local adaptivity with regression splines methods. We believe
our work dispels such doubts.
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