
A Case Study in

Exploratory Functional Data Analysis:

Geometrical Features of the Internal Carotid Artery

Laura M. Sangalli, Piercesare Secchi,

Simone Vantini, Alessandro Veneziani ∗

∗Laura M. Sangalli is Post-Doctoral Fellow (email: laura.sangalli@polimi.it), Piercesare Secchi

is Professor (email: piercesare.secchi@polimi.it) and Simone Vantini is PhD student (email: si-

mone.vantini@polimi.it), MOX - Dipartimento di Matematica, Politecnico di Milano, P.za Leonardo

da Vinci 32, 20133 Milano, Italy; Alessandro Veneziani is Associate Professor, Department of

Mathematics and Computer Sciences, Emory University, 1131-002-1AC, Atlanta GA 30322, USA

(ale@mathcs.emory.edu). This research has been carried out within AneuRisk Project, a joint re-

search program involving MOX Laboratory for Modeling and Scientific Computing (Dipartimento di

Matematica, Politecnico di Milano), Laboratory of Biological Structures (Dipartimento di Ingegneria

Strutturale, Politecnico di Milano), Istituto Mario Negri (Ranica), Ospedale Niguarda Ca’ Granda

(Milano), and Ospedale Maggiore Policlinico (Milano). The Project is supported by Fondazione

Politecnico di Milano and Siemens Medical Solutions Italia, and partially supported by Ministero
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Abstract

This pilot study is a product of the AneuRisk Project, a scientific program

that aims at evaluating the role of vascular geometry and hemodynamics in

the pathogenesis of cerebral aneurysms. By means of functional data analy-

ses, we explore the AneuRisk dataset to highlight the relations between the

geometric features of the internal carotid artery, expressed by its radius profile

and centerline curvature, and the aneurysm location. After introducing a new

similarity index for functional data, we eliminate ancillary variability of ves-

sel radius and curvature profiles, through an iterative registration procedure.

We then reduce data dimension by means of functional principal components

analysis. Finally a quadratic discriminant analysis of functional principal com-

ponents scores allows us to discriminate patients with aneurysms in different

districts.

Keywords: Curve Registration, Functional Principal Components Analy-

sis, Aneurysm Classification, Hemodynamics.

Cerebral aneurysms are deformations of cerebral vessels characterized by a bulge

of the vessel wall. This is a common pathology in adult population, usually asymp-

tomatic and not disrupting: epidemiological statistics (Rinkel et al., 1998) suggest

that between 1% and 6% of adults develop a cerebral aneurysm during their lives. On

the other hand, the rupture of a cerebral aneurysm, even if quite uncommon - about

1 event every 10000 adults per year - is usually a tragic event. Unfortunately, rup-

ture preventing therapies, both endovascular and surgical treatment, are not without

risks; this adds to the fact that in clinical practice general indications about rupture

risk are still missing.

Even the origin of the aneurysmal pathology is still unclear. Possible explanations,

discussed in the medical literature, focus on the interactions between biomechanical

the image reconstructions. Finally, we would also like to thank the associated editor and three

anonymous referees for their constructive comments.
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properties of artery walls and hemodynamic factors, such as wall shear stress and

pressure; the hemodynamics are in turn strictly dependent on vascular geometry. See

e.g. Hoi et al. (2004), Hassan et al. (2005), Castro et al. (2006). The study of these

interactions is the main goal of AneuRisk Project, a scientific endeavor which joins

researchers of different scientific fields ranging from neurosurgery and neuroradiology

to statistics, numerical analysis and bio-engineering.

Arteries are basically hollow cylindrical pipes, featuring three-dimensional bends,

branchings, bifurcations and progressive narrowing (“tapering”) from proximal dis-

trict (heart) to distal districts (peripheral circulation). Impact of morphology on fluid

dynamics has been extensively investigated (e.g. Berger et al., 1983). An adimensional

index, called Dean Number D (e.g. Jitchote and Robertson, 2000), has been proposed

in order to describe different possible flow situations. The D depends on blood viscos-

ity and density (quite easy to measure), mean velocity (to be computed by numerical

simulations) and two geometric quantities: vessel radius and curvature. Hemody-

namics induced by these features are supposed to play a relevant role in aneurysmal

pathogenesis.

The present work stems from a conjecture grounded on practical experience of

neuroradiologists at Niguarda Ca’ Granda Hospital (E. Boccardi, personal communi-

cation): cerebral arteries of patients with an aneurysm at the terminal bifurcation of

the Internal Carotid Artery (ICA), or after it, show peculiar geometrical features. We

support this conjecture through the exploration of the relations between aneurysm

location and the radius and curvature of the ICA for the 65 patients included in

AneuRisk dataset. In brief: we highlight significant differences in the geometry of

the last 3 cm of ICA of patients with an aneurysm located at or after the terminal

bifurcation of the ICA compared to patients having an aneurysm before the terminal

bifurcation or who are healthy. The former patients have significantly wider, more ta-

pered and less curved ICA’s. Moreover, within this group, there is a lower variability
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of radius and curvature of the ICA.

Our data analysis follows a two-stage approach, along a paradigm advocated by

J. O. Ramsay (see Ramsay and Silverman, 2005, for an exhaustive account on this

approach to functional data analysis). In fact, our data are functional in nature, char-

acterized by very high within-patient signal-to-noise ratio and large within-patient

sample size. Analogous two-stage methods have been favored, for instance, by Sheehy

et al. (2000a) and Sheehy et al. (2000b) for the analysis of human growth curves, and

by Ramsay (2000) for the analysis of handwriting data. Indeed, given the complexity

of the objects that we study, our work could also be seen as an instance of Object

Oriented Data Analysis, as defined in Wang and Marron (2007).

The first stage of the analysis is covered in Sections 1 and 2. In Section 1, after

a brief description of the dataset and its elicitation, we smooth - separately for each

patient - the rough data, by means of local polynomial regression. We thus carry out,

in Section 2, a novel functional data registration procedure, that enables meaningful

comparisons across patients. The second stage is covered in Sections 3 and 4, where

we analyze the registered data. In particular, in Section 3, we reduce the dimension-

ality of data, finding the main uncorrelated modes of variability of registered radius

and curvature profiles, by means of functional principal component analysis. In Sec-

tion 4, a quadratic discriminant analysis of principal component scores identifies the

optimal number of principal components that best discriminate the patients with an

aneurysm located at or after the terminal bifurcation of the ICA from the remain-

ing patients. This also allows us to select representative geometries for numerical

simulations. Conclusions are drawn in Section 5.
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1 Data Capture and Elicitation

The dataset of the AneuRisk project is based on three-dimensional angiographies of

65 patients hospitalized at the Neuroradiology Department of Niguarda Ca’ Granda

Hospital, Milano, from September 2002 to October 2005. Among these, 33 patients

have an aneurysm at the terminal bifurcation of the ICA or after it, 25 patients have

an aneurysm along the left or right ICA, and finally 7 patients are healthy. None

of the patients has other severe diseases affecting the cerebral vascular system, apart

from the possible aneurysm. Percentages of females and males and of right and left

ICA’s do not differ significantly from 1/2 (the p-values of the test for equal proportions

are .14 and .78 respectively). Ages - apart from a superior outlier - appear normally

distributed (the p-value of Shapiro-Wilk test is .29) with sample mean equal to 55.85

years and sample standard deviation equal to 13.45 years. Gender, ICA side and age

will not be included in the statistical analysis because they are supposed to be related

to the aneurysmal pathology only through their effect on geometry.

The Integris Philips Allura Biplanar Unit (year 2001) working at the Neurora-

diology Department of Niguarda Ca’ Granda Hospital is an advanced rotational an-

giography system based on X-Ray Dual Fluoroscopy technology, able to provide 3D

visualizations of the scanned volume. The Unit produces, for each patient, a three-

dimensional array of gray-scaled pixels: lighter pixels show presence of flowing blood

in the related volume while darker pixels show absence of flowing blood. This array is

automatically generated by back-projection of 100 bi-dimensional angiographies (of

512× 512 pixels) taken spanning a total angle of 240o, facing the patient, in a period

of less than 5 seconds. During image acquisition, 18 ml of nonionic hydrosoluble

contrast agent is injected in the ICA at a rate of 4 ml/s.

Our data come from image reconstruction of these 3D angiographies, by means

of an algorithm devised and implemented at the Mario Negri Institute (coded in the
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Figure 1: Example of a reconstructed vessel with an aneurysm. The transparent grid represents the

reconstructed surface, the colored lines represent the reconstructed centerlines (with color referring

to the maximal inscribed sphere radius) and the main cube represents the scanned region.

Vascular Modelling Toolkit, available at http://vmtk.sourceforge.net). The al-

gorithm relies on the Level Set method for image segmentation and on differential

geometry methods for surface parameterization, with the aim of providing quantita-

tive descriptions of the geometries at hand. In particular, it identifies the lumen of

the ICA (the volume occupied by flowing blood) and provides the three spatial coor-

dinates of its centerline (computed as the set of centers of maximal spheres that can

be inscribed in the vessel lumen) and the radius of lumen sections (computed as the

radius of the maximal inscribed spheres) (Figure 1). Details about the elicitation of

these features are in Antiga et al. (2003), Antiga and Steinman (2004) and Piccinelli

et al. (2007). Alternative methods, that generate image reconstructions suitable for

object oriented data analysis, are also available; for instance, the blood vessel tree

data studied in Wang and Marron (2007) have been elicited with a method proposed

in Bullitt and Aylward (2002).

The ith patient is represented by the function:

fi : Si ⊂ R −→ R4
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s 7−→ fi(s) = (xi(s), yi(s), zi(s), Ri(s)) .

The abscissa parameter s measures an approximate distance along the ICA, from its

terminal bifurcation towards the heart. For conventional reasons, this abscissa pa-

rameter takes negative values, to highlight that the direction is opposite with respect

to blood flow. Functions xi(s), yi(s) and zi(s) map s into the left-right, up-down and

front-back coordinates of the corresponding point of the centerline. Note that these

coordinates are not absolute but relative to the cubic volume analyzed during the

angiography. Moreover left carotids are left-right reflected to make all ICA’s compa-

rable. Finally, Ri(s) is the radius of the maximal inscribed sphere centered in (xi(s),

yi(s), zi(s)).

As a matter of fact, the reconstruction algorithm provides centerlines and radius

profiles only on a fine grid of points; the number of points available for each patient

ranges from 350 to 1380, and is almost perfectly correlated to the approximate length

of the reconstructed centerlines, which in turn varies from 27.219 mm to 110.136 mm.

Moreover, data are affected by acquisition and reconstruction errors, even though

within-patient signal-to-noise ratio is always high. Regression techniques are nec-

essary to obtain continuous and differentiable estimates of the centerline functions

and thus to estimate their curvature profiles, which are functions of first and sec-

ond derivatives. In particular, we use gaussian kernel local polynomial regression.

We set to 4 the degree of the local polynomials, according to a well accepted rule

of thumb that fixes it to p + 2, where p is the highest derivative of interest. The

bandwidth is set equal to 3 following a “Goldilocks approach”. Figure 2 shows that

this value for the bandwidth neither under-smooths nor over-smooths the data, but

leads to a “just right” degree of smoothing: on the one hand, the average squared

error is low, and on the other hand, the measure of roughness, given for each curve

by 1
|Si|

∫
Si

(x′′i (s)
2 +y′′i (s)

2 +z′′i (s)2) ds, is also low. This fact can be even better appre-

ciated by comparing the estimates of first and second derivatives to first and second
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central differences of rough data, as it is shown for instance in Figure 2 for the x coor-

dinate of patient 1: estimates obtained with a low bandwidth (e.g. 0.1) are too data

adapted and fit high frequency variations, whereas estimates obtained with a high

bandwidth (e.g. 6) cannot fully track the peaks and troughs in the first and second

derivatives. However, variations of the bandwidth in a reasonable neighborhood of 3

do not appreciably affect the subsequent analyses.

A different method for data smoothing, based on free knot regression splines, is

explored in Sangalli et al. (2007).

2 Data Registration

Centerline coordinates xi(s), yi(s) and zi(s) depend on the location of the scanned

volume. This nuisance could be simply removed by considering the first derivatives

x′i(s), y′i(s) and z′i(s), instead of xi(s), yi(s) and zi(s), the only lost information being,

in fact, the location of the scanned volume. Looking at first derivatives (Figure 3)

it becomes apparent that data display two types of variability: a phase variability

and an amplitude variability. The former is strongly dependent on the dimensions

and proportions of patients’ skulls. In order to make correct comparisons among

the features fi, observed in different patients, we need to separate these two types of

variability (Ramsay and Silverman, 2005) and look for a new parameterization of each

of the n = 65 centerlines. This can be achieved by means of a registration procedure

that, optimizing a similarity criterion, finds 65 warping functions hi of the abscissa,

leading to the new registered feature functions f̃i:

f̃i = fi ◦ h−1
i ∀i = 1, . . . , n = 65

or equivalently:

f̃i ◦ hi = fi ∀i = 1, . . . , n = 65.
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Figure 2: Top-left: average squared error for the 65 estimated ICA centerlines as a function of local

polynomial bandwidth. Bottom-left: measure of roughness for the 65 estimated ICA centerlines as

a function of local polynomial bandwidth. Right: estimates x1, x′1 and x′′1 obtained with bandwidth

equal to 0.1 (red), 3 (black) and 6 (blue), superimposed to rough data, first central differences of

rough data and second central differences of rough data, respectively (gray).
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Figure 3: The 65 first derivatives x′i(s), y′i(s) and z′i(s) before registration (top) and the 65 first

derivatives x̃′i(s), ỹ′i(s) and z̃′i(s) after registration (bottom). The superimposed solid black lines are

first derivatives of the reference centerline - as estimated by Loess - before and after registration

(top and bottom respectively). The 65 radius and curvature profiles, before and after registration,

are shown in Figure 5.
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Note that the registered features f̃i are obtained by moving the observed features

fi(s) to their “correct” location hi(s). The registration procedure thus separates

the amplitude variability, captured by the 65 registered functions f̃i, from the phase

variability, captured by the 65 warping functions hi, without loss of information. The

function f̃i will be the main object of our study; we shall show that the information

captured by the warping functions hi(s), i.e., the phase variability, is ancillary with

respect to the scope of our analyses.

Analogously to Ramsay and Silverman (2005), the 65 warping functions hi are

elicited by maximizing, with respect to hi, a similarity index between each centerline

and a reference centerline. See also the recent paper by James (2007). In the following

section, we introduce a novel similarity index between curves, inspired by the one used

in Ramsay and Silverman (2005), but with more interesting mathematical properties

and suitable for managing curves defined on different supports, as are the ones we deal

with. It will be clear from the following discussion that the choice of the similarity

index ρ and the class W of warping functions hi are intrinsically connected, and that

the couple ρ and W jointly defines what is meant by phase variability.

The problem of data registration is also encountered in the analysis of longitudinal

data. For example, Lawton et al. (1972) use the framework of self-modelling non-

linear regression to face this problem; more recently, Altman and Villarreal (2004)

extend the former technique by including time-invariant covariates in the regression

model; Lindstrom and Bates (1990) instead approach the problem in the light of

non-linear mixed-effects models; Ke and Wang (2001) merge the above approaches

in a unique framework, proposing semiparametric non-linear mixed-effects models.

However, we note that the methods proposed in this literature are not ideal for data

that have high within-subject signal-to-noise ratio and large within-subject sample

size. See the discussion following Ke and Wang (2001) for illuminating comments

about this issue.
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2.1 Similarity Index

Two centerlines are said to have maximal similarity if they are identical except for a

shifting and/or a dilation along the main axes x, y and z. Since location of the scanned

volume and proportions of the skull change across patients, different shifting and/or

dilation for each axis must be permitted for centerlines to have maximal similarity.

A similarity index for two parametric curves in R, namely two functions from R

into R, will be now introduced. Later this index will be generalized for the evaluation

of the similarity between two parametric curves in R3, i.e., functions from R into R3.

Let gi ∈ L2(Si ⊂ R;R) and gj ∈ L2(Sj ⊂ R;R) be differentiable with g′i ∈ L2(Si ⊂
R;R) and g′j ∈ L2(Sj ⊂ R;R), and let the domains Si ⊂ T and Sj ⊂ T be closed

intervals included in R such that Sij = Si ∩ Sj has positive Lebesgue measure. Note

that Sobolev embedding theorem (Adams, 1975) guarantees that gi ∈ C0(Si ⊂ R;R)

and gj ∈ C0(Sj ⊂ R;R). Assuming that ||g′i||L2(Sij) 6= 0 and ||g′j||L2(Sij) 6= 0, the

similarity index between gi and gj is defined as:

ρ(gi, gj) =

∫
Sij

g′i(s)g
′
j(s)ds

√∫
Sij

g′i(s)2ds
√∫

Sij
g′j(s)2ds

. (1)

This is the cosine of the angle θij between first derivatives of the functions gi and

gj, when the inner product
∫

Sij
g′i(s)g

′
j(s)ds is introduced. Index (1) can also be

interpreted as a continuous version of Pearson’s uncentered correlation coefficient for

first derivatives.

The following useful properties of the symmetric similarity index ρ hold for any

gi, gj, Si and Sj for which ρ(gi, gj) is defined:

(i) From Cauchy-Schwartz inequality it follows that: |ρ(gi, gj)| ≤ 1.

(ii) Moreover: ρ(gi, gj) = 1 ⇔ ∃A ∈ R+, B ∈ R : gi = Agj + B.
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(iii) For all invertible affine transformations of gi and gj, say r1 ◦ gi = A1gi +B1 and

r2 ◦ gj = A2gj + B2 with A1, A2 6= 0,

ρ (gi, gj) = sign(A1A2) ρ (r1 ◦ gi, r2 ◦ gj) .

(iv) For all invertible affine transformations of the abscissa s, say r1(s) = m1s + p1

and r2(s) = m2s + p2 with m1,m2 > 0,

ρ (gi ◦ r1, gj ◦ r2) = ρ
(
gi ◦ r1 ◦ r−1

2 , gj

)
= ρ

(
gi, gj ◦ r2 ◦ r−1

1

)
.

The similarity index ρ(gi, gj) can also be interpreted as a modified version of the

eigenvalue criterion used in Ramsay and Silverman (2005). Note that here, differently

from Ramsay and Silverman (2005), the maximal value of the similarity index between

two functions gi and gj is always 1, regardless of the measure of Sij or the magnitude

of the observed features (properties (i) and (ii)). This is crucial in our analysis because

the functions fi have different domains, and the measure of these domains is modified

by the registration procedure.

For our purposes, a suitable generalization of the similarity index (1), for two

vectorial functions gi and gj from R into R3, is:

ρ(gi,gj) =
1

3
· [ρ(gxi, gxj) + ρ(gyi, gyj) + ρ(gzi, gzj)] . (2)

Properties (i) and (iv) still hold. Properties (ii) and (iii) hold with respect to a

different affine transformation on each component. In particular (ii) becomes:

(ii)’

ρ(gi,gj) = 1 ⇔ ∃A ∈ (R+)3,B ∈ R3 :





gxi = Axgxj + Bx

gyi = Aygyj + By

gzi = Azgzj + Bz

13



Note that (ii)’ holds for any vectorial generalization of the index (1) which depends

on gi and gj only through ρ(gxi, gxj), ρ(gyi, gyj) and ρ(gzi, gzj), and is equal to 1 if and

only if ρ(gxi, gxj), ρ(gyi, gyj) and ρ(gzi, gzj) are all equal to 1. This property, instead,

does not hold for the natural generalization:

∫
Sij
〈g′i(s);g′j(s)〉 ds

√∫
Sij
〈g′i(s);g′i(s)〉 ds

√∫
Sij
〈g′j(s);g′j(s)〉 ds

where brackets 〈 〉 refer to the euclidean inner product in R3. In this case, property

(ii)’ would hold if Ax = Ay = Az, i.e., if the dilation factor is the same along all three

axes. As explained at the beginning of this section, this is not appropriate for our

problem.

2.2 Registration Criterion

The ICA centerline of the ith patient is a curve in R3 that is described by the function

ci(s) = (xi(s), yi(s), zi(s)). Since centerlines are regular curves in Si, namely ci ∈
C1(Si ⊂ R;R3), and ||x′i||L2(Sj), ||y′i||L2(Sj) and ||z′i||L2(Sj) are different from zero, the

similarity index between two ICA centerlines is always computable.

Given the similarity index ρ between two curves, registering a curve ci with respect

to another curve cj means finding the function h in a class of warping functions W ,

that maximizes:

ρ(ci ◦ h−1, cj).

It is natural to ask that the registration of ci with respect to cj is equivalent to the

registration of cj with respect to ci, i.e.:

sup
h∈W

ρ(ci ◦ h−1, cj) = sup
h∈W

ρ(ci, cj ◦ h−1). (3)
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It is also natural to require that a warping function h ∈ W applied simultaneously to

the curves ci and cj, does not change the similarity index, i.e.:

ρ (ci, cj) = ρ
(
ci ◦ h−1, cj ◦ h−1

) ∀h ∈ W. (4)

In words: using a function h ∈ W to simultaneously warp two curves does not lead

to a fictitious increment of the similarity between the two. Property (iv) assures that

(3) and (4) hold if W is the group of strictly increasing affine functions. We will thus

take:

W = {h : h(s) = ms + p with m ∈ R+, p ∈ R} .

This joint choice for ρ and W ensures that the similarity between two curves is

invariant to changes in scale and/or location of the abscissa parameter s. Hence the

similarity index between two curves does not depend on the velocity used to track

them. The group structure of W , in particular the fact that W is closed with respect

to composition, supports the iterative procedure presented in the next section.

2.3 Iterative Procedure

If a template ICA centerline c0, defined on the interval S0 =
⋃n

i=1 Si, were given,

the registration procedure would consist in finding, for each patient i, the function

hi ∈ W that maximizes:

ρ(ci ◦ h−1
i , c0).

Unfortunately there is no a template ICA centerline. Therefore, as suggested in

Ramsay and Li (1998) and Kneip et al. (2000) we will find both a reference centerline,

acting as the template c0, and the 65 warping functions hi by means of a Procrustes

fitting criterion, implemented by alternating expectation and maximization steps:
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Figure 4: Left: similarity index between the 65 curves and the reference curve, after each iteration

step. Boxplots of the distribution of the similarity index before registration and after 5 iterations

are displayed. Right: optimal warping functions hi(s), each represented only on its domain Si. The

identity function is plotted in black.

1. Expectation step:

The reference curve is estimated using all the curves obtained at the previous

iteration. A new reference curve is obtained.

2. Maximization step:

Each curve is shifted and dilated in order to maximize its similarity with the

estimated reference curve. New curves are obtained.

The warping functions hi (Figure 4) are simply given by the composition of the

optimal warping functions found at each iteration:

hi = hiiterK
◦ . . . ◦ hiiter2

◦ hiiter1
.

The registered centerline is then defined as c̃i = ci ◦ h−1
i . Note that the group
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structure of W ensures that hi ∈ W . Technical details about the iterative procedure

are reported in the last part of this section.

The registration allows to obtain a high value of the similarity index (2) for each

patient (Figure 4). The sample mean of the similarity index, between patients’ cen-

terlines and the estimated reference curve, increases from 0.80 to 0.93; moreover, its

standard deviation decreases from 0.11 to 0.03. The fact that, for each centerline, by

means of a unique warping function of the abscissa it is possible to simultaneously and

effectively align its three spatial coordinates, is strong evidence that the registration

procedure is sound.

Visual inspection of first derivatives before and after registration (Figure 3) con-

firms that registered curves are much more similar than unregistered ones. A close

look at Figure 3 shows that the variability in c̃′i is mostly concentrated in the interval

between values of abscissa -50 and -20. The presence of very different behaviors in

this region agrees with the fact (Krayenbuehl et al., 1982) that some patients have

ICA’s with two siphons (S-shape ICA), others with only one (Ω-shape ICA), and oth-

ers with no siphon at all (Γ-shape ICA). Here, a siphon is defined as a segment of the

ICA included between two points of approximately zero curvature of the centerline.

2.4 Technical details

During each expectation step, we estimate the first derivatives of the reference cen-

terline, from the first derivatives of the 65 patients’ centerlines, by means of Loess

with gaussian kernel and smoothness parameter α equal to 20% (see for example

Cleveland et al., 1992). This adaptive fitting method has been preferred here in or-

der to keep the variance of the estimator of the reference centerline as constant as

possible along the ICA (Hastie and Tibshirani, 1990); indeed, the domains of the 65

centerlines are different, and very few curves are defined at high distance from the

terminal bifurcation. Even if the estimated reference centerline is slightly influenced
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by the value of α, the 65 final warping functions are robust with respect to this choice

within a reasonable neighborhood of α = 20%.

Note that the computation of the index ρ(c̃i, c0) does not require a new differen-

tiation of the warped function c̃i, since this can be simply obtained by the identity:

c̃′i(s) = c′i(h
−1
i (s))

1

mi

.

For ease of computation, during each maximization step curves are constrained

to be shifted forward/backward no more than ±5 mm and to be inflated/deflated no

more than ±10%. In any case, these constraints do not affect the final optimum.

After each maximization step, a global affine transformation is applied to all

warping functions in order to have:

∑n
i=1 hi(s)

n
= s (5)

or equivalently
∑n

i=1 mi/n = 1 and
∑n

i=1 pi/n = 0. The reason for this rescaling is

that, since no template curve exists, then it is desirable to have no global drift, in

terms of shifting or dilating. Note that property (iv) guarantees that the similarity

between pairs of curves does not change as long as the 65 curves are shifted and

dilated all together with the constraint (5).

The iterative algorithm is stopped when the increments of the 65 similarity indexes

are all lower than 0.01 in the maximization step; from (i) this corresponds to 1% of the

achievable maximum for each index. This occurred after 5 iterations of the algorithm

(Figure 4).

3 Data Analysis

The following analyses will involve maximal inscribed sphere radius functions R̃i and

centerline curvature function C̃i obtained after registration of the original functions
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Figure 5: Radius (top) and curvature (bottom) profiles of the 65 patients respectively before (left)

and after (right) registration. Solid black lines show mean curves, as estimated by Loess. On top

of each picture is also displayed the estimate of the probability density function of the location of

aneurysms along the ICA.

Ri and Ci along the optimal warping functions hi shown in Figure 4:

R̃i(s) = Ri(h
−1
i (s)),

C̃i(s) = Ci(h
−1
i (s)).

The curvature Ci(s) is computed as follows:

Ci(s) =
||c′i(s)× c′′i (s)||

||c′i(s)||3
where the symbol × refers to the vector product in R3 and || || is the euclidean norm

in R3. Note that the registered curvature C̃i can be obtained either by warping, along

hi, the curvature of the centerline ci, or by computing the curvature of the registered

centerline c̃i.

Figure 5 shows the tapering of the ICA, i.e., the progressive reduction of the

average radius of the carotid toward the end (values of the abscissa roughly greater
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than −30). Moreover, it shows that two peaks of curvature (the siphon centers), are

usually present at values of the abscissa of about −35 and −20. The same figure also

displays a gaussian kernel estimate of the probability density function of aneurysm’s

location along the ICA: most aneurysms are clustered in two groups, both located in

the terminal part of the ICA, where tapering is evident, and one located just after the

last peak of curvature. These results provide evidence of a link between morphology

and aneurysms onset, likely induced by hemodynamics.

We now analyze the autocovariance of radius profiles and of curvature profiles,

in order to more deeply investigate their variability structure. The autocovariance

function ΣG of a generic process G is defined as:

ΣG(t, s) = E [ (G(t)− E [G(t)]) (G(s)− E [G(s)]) ]

when the expected value exists. Since the 65 curves are known on different intervals

of the abscissa, the following analyses will focus on the interval where all curves are

available, i.e., for values of the abscissa between −33.7 and −8.0. Figure 6 shows

the sample autocovariance function (separated in sample autocorrelation and sample

standard deviation) of registered radius profiles Σ̂ eR and registered curvature profiles

Σ̂ eC :

Σ̂ eR(t, s) =
1

n− 1

n∑
i=1

[
(R̃i(t)− R̃(t))(R̃i(s)− R̃(s))

]

Σ̂ eC(t, s) =
1

n− 1

n∑
i=1

[
(C̃i(t)− C̃(t))(C̃i(s)− C̃(s))

]
.

Some details of the structure of the radius sample autocovariance function are

amenable of an anatomical interpretation. First of all, the local minimum of the vari-

ance of the radius near the value of the abscissa −13, and the weak correlation of the

radius measurements in close opposite neighborhoods of this point (block structures),

suggest that this is the average position of the dural ring the ICA goes through before
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Figure 6: Isosurfaces of the sample autocorrelation function of registered radius profiles (left) and

of registered curvature profiles (right). On top, sample standard deviations.

its terminal bifurcation. This is consistent with the presence of two clusters of an-

eurysms locations along the ICA, before and after this point, as evidenced in Figure

5. Note that this ring cannot be directly detected through angiographies. Moreover,

sample autocorrelation functions of radius and curvature show that close points of

the ICA have a weaker correlation of the curvature than of the radius. Finally, there

is negative correlation of the curvature between points in proximity of the last peak

of curvature and points in the region of lower curvature between the two peaks. This

means that, if there is a segment of the centerline with very low curvature, a marked

elbow is likely to occur just afterward, in order to enable the correct positioning of the
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final bifurcation of the ICA. The registration procedure thus highlights some physical

features common throughout the patients.

The autocovariance structures of radius and curvature profiles have been sep-

arately explored by means of Functional Principal Component Analysis (FPCA)

(Ramsay and Silverman, 2005) in order to estimate the main uncorrelated modes

of variability of these two geometric quantities, and to find their effective dimension-

ality. In this work, the main purpose of FPCA is dimension reduction, hence an

analysis based on the autocovariance function is preferred to the alternative analysis

based on the autocorrelation function.

The notation β̂Gk and λ̂Gk will respectively indicate the estimate of the kth eigen-

function and of the kth eigenvalue of the autocovariance function ΣG. The score

corresponding to the ith observed curve gi and the kth estimated eigenfunction β̂Gk

is defined as the component along β̂Gk of the ith observed curve gi centered around

the sample mean g:

∫

S

(gi(s)− g(s)) β̂Gk(s)ds.

From now on, the analysis will focus only on the first and the second eigenfunctions

of radius and curvature autocovariances. The reason for this choice is related to

the Quadratic Discriminant Analysis (QDA) that will be presented in the next sec-

tion. Figure 7 shows the estimates of the first and second eigenfunctions of radius

and curvature. As suggested in Ramsay and Silverman (2005), the eigenfunctions

are not directly plotted; instead, sample means of radius and curvature are plotted

(solid lines), together with two curves obtained by adding/subtracting, to the sample

means, the estimated normalized eigenfunctions multiplied by the estimated standard

deviation of the corresponding scores. The first and second eigenfunctions for radius

profiles β̂R1 and β̂R2, explain, respectively, 65.6% and 13.0% of the total variance (cu-

mulative 78.6%). The first and second eigenfunctions for curvature profiles β̂C1 and
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Figure 7: Estimates of the first (left) and the second (right) eigenfunctions for radius (top) and

curvature (bottom), and boxplots of the corresponding scores for the two groups (red for Lower

group and blue for Upper group).

β̂C2, explain, respectively, 33.4% and 18.2% of the total variance (cumulative 51.6%).

Eigenfunctions and corresponding scores can be interpreted as follows. Scores cor-

responding to β̂R1 quantify the overall width of the ICA: lower values are associated

to wider ICA’s, and higher values to narrower ICA’s. Scores corresponding to β̂R2

quantify the tapering effect: lower values are associated to more tapered ICA’s, and

higher values to less tapered ICA’s. Scores corresponding to β̂C1 quantify the curva-

ture of the ICA in proximity of the last peak of curvature: lower values are associated

to less curved siphons, and higher values to more curved siphons. Finally, scores

corresponding to β̂C2 quantify the curvature along the segment of the ICA between

the two peaks of curvature: lower values are associated to less curved segments, and

higher values to more curved segments. As a referee pointed out, β̂C2 could also be

interpreted as controlling shift in the location of the peak of curvature.
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4 Data Classification and Selection

In order to support the conjecture outlined in the introduction, we now focus on

discriminating the 33 patients with an aneurysm downstream of the ICA (Upper

group) from the remaining 32 patients which represent the controls. We will refer to

the latter patients as the Lower group; this includes 25 patients with an aneurysm

located before the terminal bifurcation of the ICA and 7 healthy patients. A further

split into two subgroups was not deemed of primary interest by physicians.

It is evident from inspection of the boxplots in Figure 7 that, for all four eigen-

functions, the distributions of scores have different means and/or variances in the

two groups. This is confirmed by the F-tests for equal variances and Student’s t-tests

for equal means (degrees of freedom are computed according to Welch approximation

and normality assumptions are verified by means of Shapiro-Wilk tests). Figure 7

reports the p-values of these tests. In particular, except for β̂C2, variances of scores of

the Upper group are significantly lower than the ones of the Lower group. Moreover,

mean values of scores corresponding to β̂R1, β̂R2 and β̂C2 are significantly lower in the

Upper group than in the Lower group.

According to the proposed interpretations for the eigenfunctions β̂R1, β̂R2, β̂C1

and β̂C2, these differences can be interpreted as follows:

1. The geometrical features described by β̂R1, β̂R2, β̂C1 and β̂C2 have smaller vari-

ances in the Upper group than in the Lower group.

2. Patients in the Upper group tend to have a wider and more tapered ICA’s than

those in the Lower group. Moreover they present a less curved ICA between

the two peaks of curvature.

Some of the differences detected through the analysis of FPCA scores can be roughly

retrieved by visual inspection of the different distributions of radius and curvature

profiles illustrated in Figure 8.
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Figure 8: Radius (top) and curvature (bottom) profiles for the 32 patients of the Lower group (left)

and for the 33 patients of the Upper group (right). Pointwise sample medians (black lines) and

pointwise sample interquartile regions (colored regions) are displayed.

We now perform a Quadratic Discriminant Analysis (QDA) (Hand, 1981) of FPCA

scores, in order to investigate the relationship between geometrical features and mem-

bership to the two groups.

Three issues have to be taken into account when selecting the eigenfunctions whose

scores will be considered in the QDA:

1. A small value of the Actual Error Rate (AER) - the probability for a new case

to be misclassified - is required.

2. Variances of scores are monotonically decreasing with respect to the index of

eigenfunctions.

3. The efficiency of the estimates of the eigenfunctions and of the corresponding

scores is decreasing with respect to the index of eigenfunctions (Monte Carlo

simulations, not reported here, suggest this trend). This means that estimates of

25



Figure 9: L1ER (left) and APER (right), as function of kR and kC . The broken lines correspond to

points such that kR = kC .

the eigenfunctions and of the corresponding scores become progressively worse

as the index of eigenfunctions increases.

Hence, it is natural to select the optimal set of eigenfunctions to be used for QDA

among those of the form:

(β̂R1, β̂R2, . . . , β̂RkR
, β̂C1, β̂C2, . . . , β̂CkC

)

with kR and kC small enough.

The performance of the prediction rule induced by QDA is measured by an esti-

mate of its AER. We use two different estimators for error rate evaluation:

1. Apparent Error Rate (APER), i.e., the number of sample cases that are mis-

classified according to the prediction rule obtained by using the entire sample;

this estimator is known to be overoptimistic, especially when sample size is not

large (Efron and Gong, 1983).
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2. Leave-One-Out Error Rate (L1ER), i.e., the number of sample cases that are

misclassified according to the prediction rule obtained by iteratively leaving out

the observation to be predicted; for small sample sizes, this unbiased estimator

should give the most accurate assessment among cross-validation estimators of

AER (Ripley, 1996).

In Figure 9, the performance of the prediction rule induced by QDA is shown

as function of kR and kC . For kR = 2 and kC = 2, the minimum of the L1ER is

reached and a marked elbow is also present in the APER. These make kR = 2 and

kC = 2 the joint optimal choice for kR and kC . As suggested by a referee, we validated

this finding by estimating AER also with repeated 10-fold cross-validation (Burman,

1989). Hence, for our final QDA we use the scores relative to the first and second

eigenfunctions for radius and curvature. According to L1ER, if kR = kC = 2 are used,

21.54% of the new patients would be misclassified; hence, the number of misclassified

patients, using the prediction rule induced by QDA, is estimated to be less than half

the number of patients that would be misclassified by randomly assessing patients to

the Lower or Upper group without taking into account FPCA scores.

Inspection of the estimated membership probabilities for the 65 patients using

kR = kC = 2 generates the following remarks:

1. estimated Lower group membership probabilities, for the 32 Lower group pa-

tients, range from 1 to almost 0. This means that a patient in the Lower group

may have geometrical features similar to those characterizing the Upper group;

2. estimated Upper group membership probabilities for the 33 Upper group pa-

tients are all, but one, greater than 0.5. This means that (nearly) no Upper

group patient has geometrical features similar to those characterizing the Lower

group;
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3. many Lower group patients have an estimated Lower group membership prob-

ability approximately equal to 1, while no Upper group patient has such a high

Upper group membership probability.

In terms of geometrical characterization of the two groups, these facts show that the

Lower group patients are more spread in the scores space, whereas the patients in the

Upper group are concentrated in a smaller region, nested within the region covered by

the Lower group. Upper group patients can thus be interpreted as a subpopulation

characterized by better defined geometrical features.

These conclusions are confirmed by inspection of the conditional error rates (Table

1): according to L1ER, predicting correctly a Lower group patient is more difficult

than predicting correctly an Upper group patient; in fact the probability of misclas-

sifying a patient belonging to the Lower group (28.12%) is nearly twice as big as the

probability of misclassifying a patient belonging to the Upper group (15.15%).

Estimated membership probabilities to the two groups are also used to select pa-

tients whose ICA has features that better distinguish them from the other group. The

ICA geometries of these patients will be used for fluid-dynamic numerical simulations

in order to investigate the impact of morphological features on hemodynamics.

Finally, Student’s t-tests, F-tests and a Linear Discriminant Analysis (Hand,

1981), are used to analyze stretching factors mi and shifting factors pi determined in

the registration phase of the analysis, as described in Section 2. The results of these

analyses show that no significant difference exists between the two groups, relative to

means and variances of stretching factors mi and shifting factors pi. Hence, the in-

formation captured by warping functions is ancillary to the problem of classification,

confirming the effectiveness of the registration procedure.
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L1ER = 21.54% APER = 15.38%

Abs. Lower Upper

Lower 23 9

Upper 5 28

Abs. Lower Upper

Lower 23 9

Upper 1 32

Rel. Lower Upper

Lower 35.38% 13.85%

Upper 7.69% 43.08%

Rel. Lower Upper

Lower 35.38% 13.85%

Upper 1.54% 49.23%

Cond. Lower Upper

Lower 71.88% 28.12%

Upper 15.15% 84.85%

Cond. Lower Upper

Lower 71.88% 28.12%

Upper 3.03% 96.97%

Table 1: Absolute, relative and conditional confusion matrices estimated according to L1ER (left)

and to APER (right). Rows labels refer to true classes, column labels refer to predicted classes.

L1ER and APER are also reported on top.

5 Conclusions

The statistical analysis highlights significant differences in the geometry of the last

3 cm of Internal Carotid Arteries of patients with an aneurysm located at or after

the terminal bifurcation of the ICA (Upper group) and patients with an aneurysm

located before the terminal bifurcation of the ICA or who are healthy (Lower group).

These differences refer to both radius and curvature of the ICA. The Upper group

patients present significantly wider and more tapered ICA’s than the patients of the

Lower group; the segment of ICA between the two peaks of curvature is less curved in

patients of the Upper group than in patients of the Lower group. Moreover, variability
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related to geometrical features is much lower within the Upper group than within the

Lower group. Geometrical features are well characterized through projections on

the first two functional principal components of radius and curvature. A Quadratic

Discriminant Analysis of principal components scores allows us to select cases for

numerical simulations.

The results presented here, if confirmed on a larger dataset, can support clinical

practice. Indeed, they could be appropriately included in the output generated by the

image acquisition device, providing immediate decision support to medical doctors.
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